Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL A Constituent Institution of Manipal University

## V SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

## **END SEMESTER EXAMINATIONS, NOVEMBER 2017**

## SUBJECT: LINEAR CONTROL THEORY [ELE 3101]

**REVISED CREDIT SYSTEM** 

| Time: 3 Hours |                             | Hours Date: 15 <sup>th</sup> November 2017                                                                                                                                                                                                                      | Max. Marks: 50                                                            | Max. Marks: 50 |  |
|---------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------|--|
| Instr         | uctio                       | ons to Candidates:                                                                                                                                                                                                                                              |                                                                           | -              |  |
|               | *                           | Answer <b>ALL</b> the questions.                                                                                                                                                                                                                                |                                                                           |                |  |
|               | *                           | Missing data may be suitably assumed.                                                                                                                                                                                                                           |                                                                           |                |  |
|               | *                           | Semi-log graph sheet will be provided                                                                                                                                                                                                                           |                                                                           |                |  |
| 1A.           | Deri<br>tran<br>Toro<br>The | rive the transfer function for a DC motor with load making suitable as a set function $G(s) = \theta_L(s)/E_a(s)$ , for the DC motor and load shown rque-speed relation is given by $T_m = -8\omega_m + 200$ , when the input voltage specifications given are: | Sumptions. Find the 1 in <b>Fig. Q 1A</b> . The age $(E_a)$ is 100 volts. |                |  |
|               | <i>J</i> <sub>m</sub> =     | = $1 kgm^2$ , $B_m = 5Nm - s/rad$ , $J_L = 400 kgm^2$ , $B_L = 800Nm - s/rad$                                                                                                                                                                                   |                                                                           |                |  |
|               | N <sub>1</sub> =            | $= 20, N_2 = 100, N_3 = 25, N_4 = 100.$                                                                                                                                                                                                                         | (04                                                                       | 9              |  |
| 1B.           | Witl<br><b>Q 11</b>         | h detailed steps, determine the transfer function for the system represer ${f B}$ using Mason Gain Formula.                                                                                                                                                     | tation shown in <b>Fig.</b> (03                                           | り              |  |
| 1C.           | For<br>0.8 s                | the system shown in <b>Fig. Q 1C</b> , determine the value of <b>K</b> and <b>a</b> , so tha seconds and damping factor is 0.707.                                                                                                                               | t the settling time is <b>(03</b>                                         | り              |  |
| 2A.           | Dete $t =$                  | ermine the capacitor voltage in the network shown in <b>Fig. Q 2A</b> if t<br>0 s. Assume zero initial conditions. Further, determine the time con-                                                                                                             | he switch closes at stant, rise time and                                  |                |  |

**2B.** The mathematical model of a system configured in unity feedback control loop is given as:

$$G(s) = \frac{K(s+4)}{s(s+1.2)(s+2)}$$

Determine:

a) The range of *K* that keeps the system stable.

settling time of the capacitor voltage

- b) The value of *K* that makes the system oscillate
- c) The frequency of oscillation when *K* is set to that value which makes the system oscillate (03)
- **2C.** A unity feedback system has the open loop transfer function is given below:

$$G(s)H(s) = \frac{K(s+6)}{s(s+1)(s+4)}$$

Draw the Nyquist diagram and determine the range of '*K*' for which the system remains stable. (04)

(03)

**3A.** Sketch the root locus for unity feedback system with open loop transfer function given and comment on the range of 'K' for system to be stable.

$$G(s) = \frac{K(s+1)}{s(s+4) + 13}$$
(03)

- 3B. For the asymptotic bode magnitude plot as shown in Fig. Q 3B,
  - a) Find the gain margin (dB) of the system
  - b) If a proportional controller having a gain of '2' is added to the system, find the gain margin in dB. (03)
- **3C.** A negative unity feedback system has plant transfer function given as:

$$G_p(s) = \frac{k(s+1)}{s^2(s+5)(s+20)}$$

Design and realize a suitable active lag compensator so as to achieve an acceleration error of  $100s^{-2}$  while ensuring a phase margin of  $25^{0}$ . **(04)** 

- **4A.** Explain and realize a lead network using passive elements and also realize the same with an operational amplifier. Highlight the main difference between the two approaches.
- **4B.** In a unity feedback control system, a PD controller is cascaded with the plant transfer function in the forward path. The transfer function of the plant is given as:

$$G_p(s) = \frac{100}{s(s+10)}$$

Determine the proportional and derivative gains of the controller for an overall velocity error constant  $K_v = 1000$  and the damping ratio  $\zeta = 0.5$ . (03)

**4C.** A unity feedback system has an open loop transfer function given by:

$$Gp(S) = \frac{k}{s(s+7)}$$

There exists a dominant pole damping ratio of 0.517. Design and realize a suitable controller so as to reduce the steady state error zero. (04)

- **5A.** Justify appropriately whether, the transfer function  $G_c(s) = \frac{(s+1)}{(s+2)}$  can function as a lead compensator. Further, determine the frequency at which the phase of  $G_c(s)$  is maximum. **(03)**
- **5B.** Represent the electrical network shown in **Fig. Q 5B**, in state space physical variable form if the output is current through the resistor. Convert the state space to represent the same electrical network in transfer function form.
- **5C.** Design an observer for the plant represented in observer canonical form as:

$$G(s) = \frac{1}{(s+1)(s+2)(s+5)}$$

Assume the closed loop performance of the observer to be governed by the following characteristic polynomial:

$$\lambda^3 + 120\lambda^2 + 2500\lambda + 50000 \tag{04}$$

(03)

(03)



Fig. Q 1C

Fig. Q 2A

