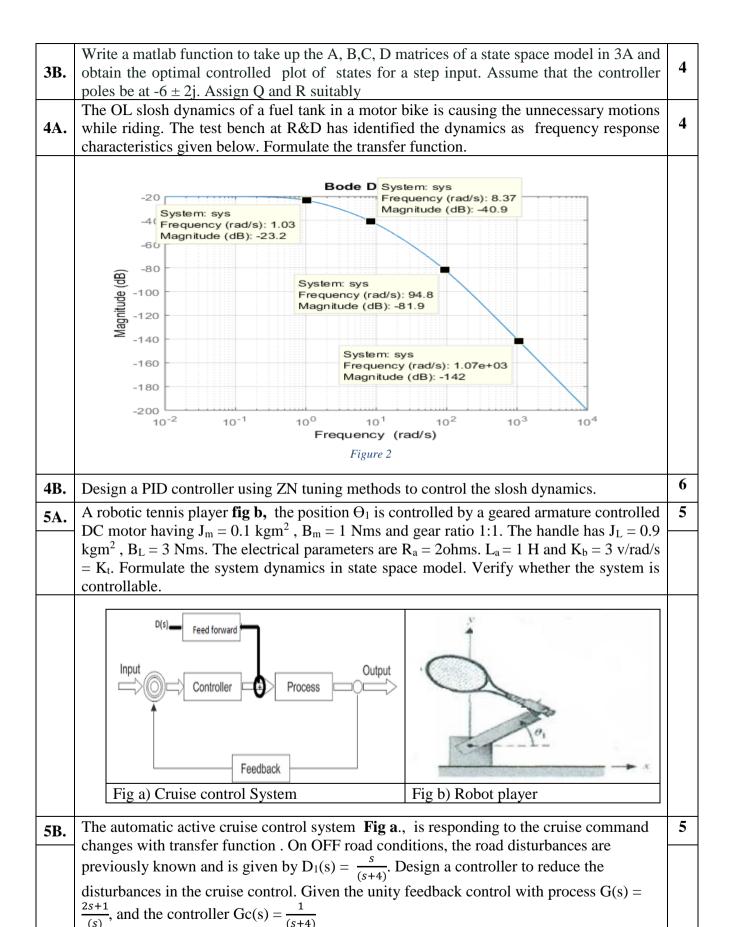


V SEMESTER B.TECH. (MECHATRONICS ENGINEERING) END SEMESTER EXAMINATION DEC 2017

SUBJECT: DYNAMICS AND CONTROL OF MECHATRONICS SYSTEMS [MTE 4013]

REVISED CREDIT SYSTEM (../12/2017)


Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- ❖ Data not provided may be suitably assumed

1A.	Design a state space controller to stabilize the Segway system given by	10
	$\ddot{x} - 4x = u$ Where y is the vertical angle and is desired to be maintained at zero with 1.67 sec settling time and damping factor 1.2. Figure 1	
2A.	A shock absorber system is having a nonlinear spring dynamics and is given as $\ddot{x} + x + (1 - x)\dot{x} = u$. Obtain a linear state space model around its equilibrium point.	4
2B.	Synthesis a Lyapunov function for the linearized system in 2A to check the stability of the system.	3
2C.	Check whether the following Lyapunov function is a valid candidate function for the nonlinear homogeneous system $\ddot{x} + x + (1 - x)\dot{x} = 0$	3
	$V(x) = 2x_1^2 + x_2^2 + 4x_1x_2$, for $x_1 \ge 0$, x_2 is unconstrained.	
3A.	Find the response of a homogeneous system for initial conditions $X = [1 \ 0]^T$	6
	$\dot{X} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} X + \begin{bmatrix} 1 \\ -1 \end{bmatrix} U; Y = \begin{bmatrix} 1 & 1 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} U$	

[MTE 4013] Page **1** of **2**

[MTE 4013] Page **2** of **2**