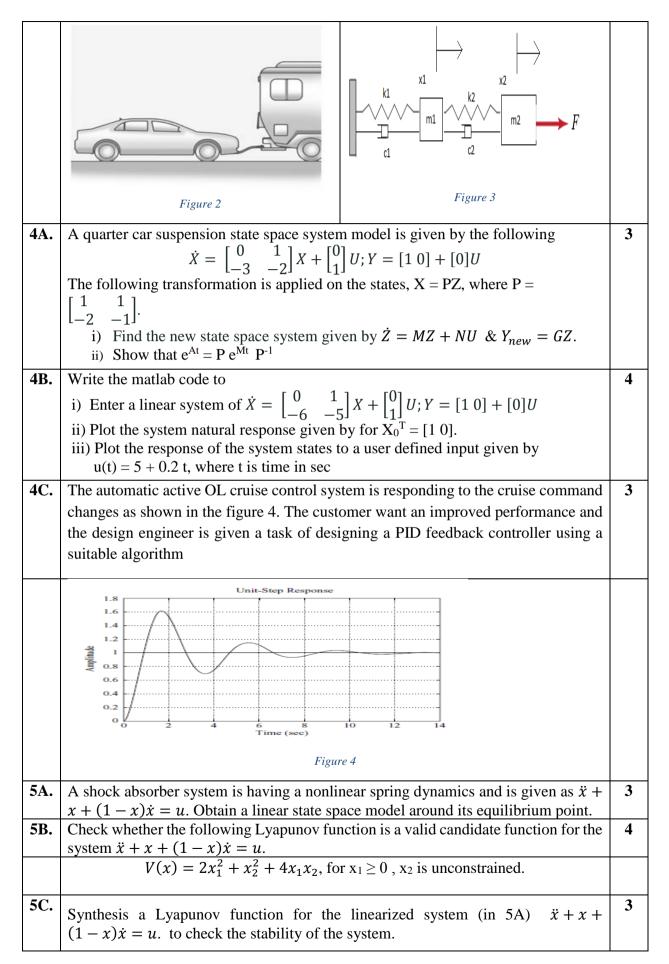
V SEMESTER B.TECH. (MECHATRONICS ENGINEERING) END SEMESTER EXAMINATIONS, NOV 2017

SUBJECT: DYNAMICS AND CONTROL OF MECHATRONICS SYSTEMS

[MTE 4013]

REVISED CREDIT SYSTEM (24/11/2017)


Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Data not provided may be suitably assumed
- ✤ Graph sheets will be provided

1A.	Mention any four advantages of state space modeling over transfer function modeling?	03
18.	The speed of a milling machine Fig 1. , connected to the rotor, is controlled by a DC armature controlled motor. Assuming the ideal actuator and sensor characteristics, model the system in state space domain. The system parameters are: $J = 0.01$, $b = 0.1$, $Kb = Kt = 0.01$, $R = 1$ ohm, $L = 0.5$ H	04
1C.	Obtain the transfer function model for the system shown in figure 3 and hence find the DC gain of the system.	
2A.		
3A.		
3B.	Obtain the linear state space model of a vehicle on tow given in figure 2. A mass damper equivalent of the same is shown in figure 3	05

V SEMESTER B.TECH. (MECHATRONICS ENGINEERING)

SUBJECT: DYNAMICS AND CONTROL OF MECHATRONICS SYSTEMS

[MTE 4013]

1.4		1
1A.	a) Considers initial states	1 m each
	b) MIMO systems	
	 c) Organized controller designs d) Many stability englaging 	
	d) More stability analysis	
10	e) Response analysis	1
1 B .	$J\ddot{ heta} + b\dot{ heta} = Ki$	1m
	$L\frac{di}{dt} + Ri = V - K\dot{ heta}$	
	dt	
	$\frac{d}{dt} \begin{bmatrix} \dot{\theta} \\ i \end{bmatrix} = \begin{bmatrix} -\frac{b}{J} & \frac{K}{J} \\ -\frac{K}{L} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} \dot{\theta} \\ i \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{L} \end{bmatrix} V$	0.5+1+1m
	$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \dot{ heta} \\ i \end{bmatrix}$	
	Substitution	0.5m
1C.	$\mathbf{G}(\mathbf{s}) = \mathbf{C} \ (\mathbf{s}\mathbf{I} \cdot \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$	1m
	$P(s) = \frac{\dot{\Theta}(s)}{V(s)} = \frac{K}{(Js+b)(Ls+R)+K^2} \qquad [\frac{rad/sec}{V}]$	1m
	Dc gain with $s = 0, 0.099$	1m
2A.	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} D = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	2m
	Controllability of the pair(A,B) = $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -6 \\ 1 & -6 & 25 \end{bmatrix}$	1m
	Zeta = 0.6, wn = 1, req poles = $[-0.6-0.8i - 0.6+0.8i - 5]$ Adding extra pole	4m
	Pole placement $ sI-An = A-B*K $	2m
	K = [-1 - 4 0.2] $u = -Kx$	1m
3A.	System state space model A = $\begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$ B = $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ C = [1 0] D = [0]	1

	Assume Q = $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ R =[1]		1
	Ricatti eqn $A^{T}P+PA - PBR^{-1}B^{T}P+$	Q = 0	1
	$P = \begin{bmatrix} 1.2 & 0.2 \\ 0.2 & 0.2 \end{bmatrix}, K = \begin{bmatrix} 0.236 & 0.236 \end{bmatrix}$		2
3B.			
4 A	$\dot{Z} = \begin{bmatrix} 1 & 2 \\ -3 & -3 \end{bmatrix} Z + \begin{bmatrix} -1 \\ 1 \end{bmatrix}$	2	
	$M = P^{-1}AP; N = P^{-1}B; G = CP$		
	$Z(t) = e^{Mt} Z(0)$		1m
	$\mathbf{P}^{-1}\mathbf{X}(t) = \mathbf{e}^{\mathbf{M}t} \ \mathbf{P}^{-1}\mathbf{X}(t)$		
	$X(t) = P e^{Mt} P^{-1}X(t); also X(t) = e^{At} X(t)$	X(0)	
4B	Enter A,B,C,D	Y = initial(sys,xo,t)	1m+1m+2m
	Define sys =ss(a,b,c,d)	U = zeros(size(t))	
	Xo = [1 0]	U = 5 + 0.2 * t	
	T = 0:0.1:10	Y2 = lsim(sys,xo,u,t)	

4C.	