VII SEMESTER B.TECH. (CHEMICAL ENGINEERING) **END SEMESTER EXAMINATIONS, NOV 2017**

SUBJECT: DESIGN AND DRAWING OF CHEMICAL EQUIPMENTS

[CHE 4102]

REVISED CREDIT SYSTEM (21/11/2017)

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

The mechanical design of a standard (calendria) vertical short tube evaporator with the help of the following data:

Evaporator drum : operating under vacuum Amount of water evaporated : 2500kg/hr Heat transfer area : 220m² Steam pressure : 0.15 N/mm^2 Density of liquid : 1000kg/m³ Material of construction (MOC) : Evaporator : carbon steel IS-2062 Tubes : brass Permissible stress for carbon steel : $98N/mm^2$ Modulus of elasticity : Carbon steel: 19.0 x 104 N/mm² Brass : 9.5 x 104 N/mm² Conical head bottom : cone angle 120° Torispherical head at top : (100-10)Poisons ration : 0.3 Length of drum – 4000mm Operating temperature – 120°C Top head connected with drum : Flange (IS-2004-1962 Class -2)

Calendria with vertical tubes Tubes and tube lay out :

Tube diameter (outside): 100mm Tube thickness : 1.5mm Tube length : 1220mm The effective tube length : 1165mm Tube lay out : triangular pitch : 125mm

Bottom flange of the calendria

Flange material - IS-2004-1962 Class -2 Bolting material : 5% Cr Mo Steel 10M Gasket material : asbestos composition (1.6mm thickness) Out side diameter : 3894mm Pitch circle diameter : 3825mm Number of bolts : 112 Flange joint : Lap joint

Time: 3 Hours

1.

2.		AII	2	BUTANOL 40 810	10M
	Temp (°C)	100			
	Density (kg/m ³)	2.4			
	Viscosity (cP)	0.02		0.85	
	Thermal Conductivity (W/mK)	0.02		0.178	
	Sp. Heat (KJ/kgK)	1		2.8	
3.	Design shell and tube heat exchang Shell side MOC: carbon steel Number of shell : 1 Number of passes : 1 Fluid : liquid Working pressure : 0.33 N/mm ² Design pressure : 0.50 N/mm ² Temperature inlet : 30°C Temperature outlet : 50°C Segmental baffles (25% cut) with spacers Head Crown radius : 400mm Knuckle radius : 40mm Shell flange : female facing Gasket : flat metal – jacketed asbe Bolts – steel Nozzles – inlet and outlet – 75mm Vent - 25mm Drain – 25mm Opening for relief valve – 50mm Permissible stress for carbon steel N/mm ² Permissible stress for bolt materia 140.6N/mm ²	tie rods estos filled n - 95 1–	Tube side Tube and tube stainless steel (Number of tub Outside diame Length (maxim Pitch (square) - Fluid – gas Working press Design pressur Inlet temperatu Outlet temperatu Outlet temperatu Permissible str Channel and (Material – carti Joint with tube Gasket – steel Nozzle – inlet 75mm Permissible str	sheet material : (SS 304) es -54 ter -18 mm hum U) $-12m$ -25mm ure -19 N/mm^2 re -21.5 N/mm^2 ure -150°C ture -55°C ess -100.6 N/mm^2 channel cover bon steel (IS-2062) -5 sheet - ring facing jacked asbestos and outlet dia. $-$ ess -95 N/mm^2	10
4A.	A plant needs to take care of its emissions by employing a sieve plate tower (for absorption). Initial design calculations have been conducted to obtain certain data (given below). You are tasked with the job to check whether weeping occurs or not. Check if the design values need any corrections. DATA: $A_h = 0.048 \text{ m}^2$, $A_a = 0.61 \text{ m}^2$, $t_R = 3 \text{ mm}$, $t_S = 400 \text{ mm}$, $d_h = 5 \text{ mm}$, $\rho_g = 1.41 \text{ kg/m}^3$, $G = 0.824 \text{ m}^3$ /s, $L = 0.014 \text{ m}^3$ /s, $L_w = 80 \text{ cm}$, $\rho_L = 1000 \text{ kg/m}^3$, $\sigma = 59.1 \text{ dynes/cm}$, $h_w = 50 \text{ mm}$.				5№
4B.	Explain in detail mechanical design of tall vertical vessel.				5N