			r				
	Reg.	No.					
MANIPAL	INSTI	TUTE	OF	TEC	HNC	DLO	GY
MANIPAL							

VII SEMESTER B.TECH. (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOVEMBER 2017

SUBJECT: PROJECT ENGINEERING [CHE 4023] REVISED CREDIT SYSTEM (23/11/2017)

Time: 3 Hours

1

MAX. MARKS: 50

Instructions to Candidates:

- $\$ Answer ALL the questions.
- Missing data may be suitable assumed.

Estimate the Fixed capital investment, Working Capital and the Total Capital Investment required to set up a Chemical process plant with the following major equipment given in the table. Consider the year of construction to be 2017. Also consider the cost of piping to be 13% of fixed capital equipment

Equipment / size	Number	Year of	Price of the	Original size of	exponent	
		purchase of	equipment in	similar		
		similar	the year	equipment		
		equipment /	mentioned in	considered		
		(Marshall and	column 3 per			
		Swift Index)	unit			
Shell and Tube Heat	3	2015 (2224.3)	779790	40 m ³	0.6	
Exchanger, floating						10
head (30 m ³)						
Centrifugal pump (12 m³)	4	2010 (1587)	77946	9 m³	0.33	
SS Reactor (3 m³)	2	2014 (2067.9)	194866	1.4 m ³	0.56	
Evaporator (30 m ²)	1	2013 (1926.7)	450000	20 m ²	0.54	

2A	How is Pump sizing performed? Explain the hydraulic resistance.	7
2B	What are the various codes and standards to be followed for selection of Material of Construction?	3
3 /	Explain the sources, evaluation and control of exposure hazards in a process industry	6

Discuss the operational difficulties associated with Compressors

AA. What are the numerous factors to be considered for Plant Location selection?

B Write a note on Instruments used to measure temperature in a Process Industry

Consider a reactor-distillation column system given below. Take ΔT_{min} to be 10^{o}C

Stream number	Description	Supply Temp °C	Target Temp °C	Heat capacity rate, CP kJ/s. °C
1	Reactor feed	20	160	50
2	Reactor effluent	120	260	55
3	Bottom product	280	60	30
4	Overhead product	180	20	40

a. Find the minimum utility requirements

- b. Find the feasible matches above and below pinch
- c. Draw the hot and cold composite curves

CHE 4023

5

10