

AANIPAL INSTITUTE OF TECHNOLOGY

VII SEMESTER B.TECH. (COMPUTER SCIENCE & ENGINEERING) END SEMESTER MAKEUP EXAMINATIONS, DECEMBER 2017

SUBJECT: ELECTIVE - IV- COMPUTER VISION [CSE 4002]

REVISED CREDIT SYSTEM (30/12/2017)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Missing data may be suitable assumed.

1A.	How the colour is perceived by humans? Plot and interpret the spectral responses of receptors in human retina.	2M
1 B .	Explain the process of line detection using <i>Hough transform</i> .	3M
1C.	What are the motivational factors for using local features? Also explain steps involved in feature matching. What is expected from a good feature detector algorithm?	5M
2A.	Explain the working of Scale Invariant Feature Descriptor.	5M
2B.	What is the significance of <i>Eigen</i> values in an interest point detector? How does Harris method computes a score <i>R</i> to decide if a point of interest or not?	3M
2C.	Mention any four differences between HoG and $SIFT$ descriptors. Justify each statement.	2M
3A.	Derive the eight point algorithm for estimation of <i>fundamental matrix</i> .	5M
3B.	What are intrinsic and extrinsic camera parameters? Derive the camera matrix.	5M
4A.	What is optical flow? Derive motion vectors U and V using Lucas and Kanade method.	4 M
4B.	How do you obtain incremental change in parameter required to align image patches between consecutive video frames used in tracking?	4 M
4C.	How do you arrive at the constraint $X_r^T F X_l = 0$, where X_r^T is a point in right image, X_l is a point in left image and F is the fundamental matrix?	2M
5A.	Briefly explain any one classifier to classify objects into classes.	5M
5B.	Derive the gradient descent equation.	3M
5C.	Mention few applications and challenges of computer vision algorithms.	2M

##