Reg. No.

VII SEMESTER B.TECH. (INFORMATION TECHNOLOGY / COMPUTER AND COMMUNICATION ENGINEERING)

END SEMESTER EXAMINATIONS, NOVEMBER 2017

SUBJECT: PROGRAM ELECTIVE - IV: COMPUTER VISION [ICT 4018]

REVISED CREDIT SYSTEM (23 / 11 / 2017)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- Answer ALL the questions.
- * Missing data, if any, may be suitably assumed.
- 1A. Give step by step procedure to identify and describe the image feature using Scale Invariant Feature Transform (SIFT).
- 1B. If F is the fundamental matrix of the camera-pair (P, P'), then what is the fundamental matrix for (P', P)?
- 1C. Apply Sobel filter for the data given in Table: Q.1C and identify the edge points. Use threshold as 9.

Table: Q.1C 50 10 20 30 40 20 10 50 30 40 30 20 10 40 50 -25 15 0 10 -10 -25 -30 10

- 2A. How to use HOG descriptor for human detection in an image?
- 2B. Create 3 x 3 Gaussian filter and smoothen the image block given below:

10	5	15	15	20
5	5	25	25	10
10	20	20	10	25
10	15	15	5	25
5	15	10	5	25

2C. Prove that in perspective projection nearest objects look bigger.

3A. How to identify the interest points in the image using Harris corner detection 5

technique?

3B. Give step by step procedure for text segmentation using histogram based thresholding.

thresholding.

Page 1 of 2

ICT 4018

2

5

3

2

3

5

3℃.	List the set of properties invariant under i. Orthogonal Transform ii. Affine Transform	2			
4A.	How to segment the circle in an image using Hough transform?				
4B.	Explain the method for face detection using principal component analysis.				
4C.	Show that two-dimensional LoG can be separated into 4 one-dimensional Convolutions.	2			
5A.	Using Principal Component Analysis (PCA) to reduce the dimensionality of the data given below:				
	X1 X2 5 10				
	10 20	5			
	$\begin{array}{c c} 20 & 30 \\ \hline 30 & 40 \end{array}$				
	40 50				
	50 60 60 70				
	70 80				
5B.	Derive the equation for optical flow for pure translation along Z-axis.				
5C.	Give equation for epi-polar line in the right camera, if x is a point on the left camera and F is fundamental matrix. Also specify the rank of fundamental matrix.	2			