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Instructions to candidates

o Answer ALL FIVE FULL questions. Ali questions carry equal marks.
o Missing data if any, may be suitably assumed.

1A. Bxplain the following ferminologies in reference to Machine Learning:

i) Examples
Labels

iii) Training sample

iv) Validation sample

vi) Loss function

ii)
1)
)
v) Test sample
i) 1
i)

vii) Hypothesis set 5]

1B. Assume that the target variable and the inputs are related via ' = 972 4 ) where
¢ is an error term that captures either unmodeled effects or random noise. Further,
assume that ¢ ~ A(0,a%), and the density of €/ is given by

1 (02
67 2o

p(eV) =

2o

Using these probabilitic assumption on the data show that the least-square regression
corresponds to finding the maximum likelihood estimate of @ 13l

1C. Consider the univariate Gaussian distribution parameterized by g, i.e y ~ A (g, 1). Show
that the univariate Gaussian distribution Is in exponential family, and clearly state what

are b(y), n, T{y), and a(n). 2]

2A. Given a dataset {(2®, y®:4 =1, m)} consisting of m independent examples. where
2 ¢ R®, and y® € {0,1}. 1 Model the joint distribution of (z,y) according to:

ply) = ¢*(1-¢)""
1

p(zly = 0) = (Q—WW exp ( - 5(5‘3 — o) 2 (& - UU))
plzly=1)= @W eXp ( - %(’C — ) oz ,ul)).

Here, the parameters of the model are ¢, ¥, po and gy, The lbg—likelihood of the data is
given by
m
l(qf’? ,u'ﬂ'n F1, E) = ]'Ong(x(%)ly(Z)! Ho, b1, E)p(y(z)a QB)
i=1
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[5]
2B. Consider the data set given in Table Q.2B, for designing a SVM whose inner product
kernel is given by
K(x, %) = (1 +xTx)%

Compute the optimum value of the dual objective function.

Table: Q.2B

Input Vector, x  Desired Response, d

(-1,-1) —1
(=1,+1) 4l
(+1,-1) +1
(+1,+1) -1

2C. The Gaussian kernel is given by the function
llz—z1|?

Elg.zl=g & ;

where ¢ > 0 is some fixed positive constant. Prove that the Gaussian kernel is indeed a
valid kernel. [Hint: ||z — 2||> = ||z||?> — 227z + ||2]|*.] (2]
3A. Describe various techniques for feature selection. [5]
3B. Consider a binary classification problem with labels y € {0, 1}, and let D be a distribution
over (z,y). Let H = {hy,..., hx} be a finite hypothesis class, and suppose our training set
S = {(z®,y®);5 = 1,...,m} is obtained by drawing m examples IID from D. Suppose
we pick h € H using empirical risk minimization: h = arg miné(h). Also let h* =

heH
arg mine(h). Let any d,v > 0 be given. Show that for e(h) < e(h*) + 27y to hold with
heH
probability 1 — 4§, it suffice that m > 531; log 2. (3]
3C. What do you understand by the term online learning”? How is it different from batch
learning? 2]

4A. In a factor analysis model, assume a joint distribution on (z, z) as follows
z~N(0,I)
x|z ~ N(p+ Az, ¥)

where g € R?, A € R™* and the diagonal matrix ¥ € R™*", (k < n). Equivalently
factor analysis model can also be defined according to

z~ N(0,1)
e~ N(0,T)
r=p+Az+e
Also we have oy AT :
2= (B aa])
Consider a training set {z®;i = 1,...,m}, the log-likelihood of the parameter is given

by

1 i i
W, A, T) = logH ”/2}AAT - llfilfzerp (-—E(g;( 1) (AAT +U) 2@ — ”)) .
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4B. Consider a coin-flipping experiment in which you are given a pair of coins A and B of
unknown biases 4 and 0 respectively (i.e., on any given flip, coin A will land on heads
with probability 64 and on tail with probability (1 — 6,4), similarly for coin B). Consider

the dataset collected using following procedure five times: labels of the coins are removed,
now randomly choose one of the two coin and perform ten independent coin tosses with

the selected coin. Let 2 = j denotes j number of heads obtained during i-th set of
experiment. The dataset obtained from this experiment are {z(!) = 5 22 = g 2 —
8,z =4,206) = 7,}. With initial estimate of biases éf) = 0.6 and ég) = (.5, apply EM

algorithm to compute (éff), 93)).

[3]

4C. Briefly discuss various types of inherent ambiguities associated with Independent Com-
ponent Analysis (ICA).

(2]

5A. Consider Cocktail Party Problem (CPP), wherein sources are modeled by a random vari-
able s € R”, which is drawn according to some density p,(s). Now let another random
variable be defined according to x = As, where z € R” and A € R"*", Here, matrix A is
known as mixing matrix, and in order to find the sources we need to compute unmixing
matrix W = A~ we can also write the observed variable as z = W~'s. The density of
observed variable x can be written as

pla) = Hpa(wfm)lWl,

where p(s) = g/(s) and g is a sigmodal function, which is defined as

1
EEE .
9(s) 1+4es
The square matrix W is parameter in the model. Given a training set {z(:7 = 1, ... ,m}
the likelihood function is given by
m
LW) =[] p(=®)
i=1
Using maximum-likelihood estimate derive the expression for W. 5]

5B. Consider a generic convex optimization problem
minimize f(z)
T

8it al2)£0, i=1,....m
hite) =0, 4 = L. ooy

where f, g; are convex function, and h; are affine functions, and z is optimizable variable.
Write the primal and dual problem for the given constrain optimization problem. 3]

5C. Why do you need to pre-process the data before applying Principal Component Analysis?
List those pre-processing steps. 2]
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