

## MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

SEVENTH SEMESTER B.TECH (INFORMATION TECHNOLOGY / COMPUTER AND COMMUNICATION ENGINEERING) DEGREE END SEMESTER EXAMINATION-NOVEMBER 2017 SUBJECT:PROGRAM ELECTIVE-V MACHINE LEARNING (ICT 4007) (REVISED CREDIT SYSTEM)

TIME: 3 HOURS

25/11/2017

MAX. MARKS: 50

## Instructions to candidates

- o Answer ALL FIVE FULL questions. All questions carry equal marks.
- o Missing data if any, may be suitably assumed.
- 1A. Explain the following terminologies in reference to Machine Learning:
  - i) Examples
  - ii) Labels
  - iii) Training sample
  - iv) Validation sample
  - v) Test sample
  - vi) Loss function
  - vii) Hypothesis set

[5]

1B. Assume that the target variable and the inputs are related via  $y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$ , where  $\epsilon^{(i)}$  is an error term that captures either unmodeled effects or random noise. Further, assume that  $\epsilon^{(i)} \sim \mathcal{N}(0, \sigma^2)$ , and the density of  $\epsilon^{(i)}$  is given by

$$p(\epsilon^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(\epsilon^{(i)})^2}{2\sigma^2}}.$$

Using these probabilitic assumption on the data show that the least-square regression corresponds to finding the maximum likelihood estimate of  $\theta$ . [3]

- 1C. Consider the univariate Gaussian distribution parameterized by  $\mu$ , i.e  $y \sim \mathcal{N}(\mu, 1)$ . Show that the univariate Gaussian distribution is in exponential family, and clearly state what are  $b(y), \eta, T(y)$ , and  $a(\eta)$ .
- 2A. Given a dataset  $\{(x^{(i)}, y^{(i)}; i = 1, ..., m)\}$  consisting of m independent examples, where  $x^{(i)} \in \mathbb{R}^n$ , and  $y^{(i)} \in \{0, 1\}$ . Model the joint distribution of (x, y) according to:

$$p(y) = \phi^{y} (1 - \phi)^{1 - y}$$

$$p(x|y = 0) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x - \mu_0)^T \Sigma^{-1} (x - \mu_0)\right)$$

$$p(x|y = 1) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x - \mu_1)^T \Sigma^{-1} (x - \mu_1)\right).$$

Here, the parameters of the model are  $\phi$ ,  $\Sigma$ ,  $\mu_0$  and  $\mu_1$ . The log-likelihood of the data is given by

$$l(\phi, \mu_0, \mu_1, \Sigma) = \log \prod_{i=1}^{m} p(x^{(i)}|y^{(i)}; \mu_0, \mu_1, \Sigma) p(y^{(i)}; \phi)$$

ICT 400 sing MLE find the relation for  $\phi$ , and  $\mu_0$ .

2B. Consider the data set given in Table Q.2B, for designing a SVM whose inner product kernel is given by

 $K(\mathbf{X}, \mathbf{X}_i) = (1 + \mathbf{X}^T \mathbf{X}_i)^2.$ 

Compute the optimum value of the dual objective function.

Table: Q.2B

| Input Vector, x | Desired Response, d |
|-----------------|---------------------|
| (-1, -1)        | -1                  |
| (-1, +1)        | +1                  |
| (+1, -1)        | +1                  |
| (+1, +1)        | -1                  |

[3]

[5]

2C. The Gaussian kernel is given by the function

$$K(x,z) = e^{-\frac{||x-z||^2}{\sigma^2}},$$

where  $\sigma^2 > 0$  is some fixed positive constant. Prove that the Gaussian kernel is indeed a valid kernel. [Hint:  $||x - z||^2 = ||x||^2 - 2x^Tz + ||z||^2$ .] [2]

- 3A. Describe various techniques for feature selection.
- 3B. Consider a binary classification problem with labels  $y \in \{0, 1\}$ , and let  $\mathcal{D}$  be a distribution over (x, y). Let  $\mathcal{H} = \{h_1, \dots, h_k\}$  be a finite hypothesis class, and suppose our training set  $S = \{(x^{(i)}, y^{(i)}); i = 1, \dots, m\}$  is obtained by drawing m examples IID from  $\mathcal{D}$ . Suppose we pick  $h \in \mathcal{H}$  using empirical risk minimization:  $\hat{h} = \underset{h \in \mathcal{H}}{\arg \min} \hat{\varepsilon}(h)$ . Also let  $h^* = \underset{h \in \mathcal{H}}{\ker \mathcal{H}}$

 $\underset{h \in \mathcal{H}}{\text{arg min}} \varepsilon(h)$ . Let any  $\delta, \gamma > 0$  be given. Show that for  $\varepsilon(\hat{h}) \leq \varepsilon(h^*) + 2\gamma$  to hold with probability  $1 - \delta$ , it suffice that  $m \geq \frac{1}{2\gamma^2} \log \frac{2k}{\delta}$ . [3]

- 3C. What do you understand by the term *online learning*? How is it different from *batch learning*? [2]
- 4A. In a factor analysis model, assume a joint distribution on (x, z) as follows

$$z \sim \mathcal{N}(0, I)$$
  
 $x|z \sim \mathcal{N}(\mu + \Lambda z, \Psi)$ 

where  $\mu \in \mathbb{R}^n$ ,  $\Lambda \in \mathbb{R}^{n \times k}$ , and the diagonal matrix  $\Psi \in \mathbb{R}^{n \times n}$ , (k < n). Equivalently factor analysis model can also be defined according to

$$z \sim \mathcal{N}(0, I)$$

$$\epsilon \sim \mathcal{N}(0, \Psi)$$

$$x = \mu + \Lambda z + \epsilon$$

Also we have

$$\begin{bmatrix} z \\ x \end{bmatrix} \sim \mathcal{N} \left( \begin{bmatrix} \vec{0} \\ \mu \end{bmatrix}, \begin{bmatrix} I & \Lambda^T \\ \Lambda & \Lambda \Lambda^T + \Psi \end{bmatrix} \right).$$

Consider a training set  $\{x^{(i)}; i = 1, \dots, m\}$ , the log-likelihood of the parameter is given by

$$l(\mu, \Lambda, \Psi) = \log \prod_{i=1}^{m} \frac{1}{(2\pi)^{n/2} |\Lambda \Lambda^{T} + \Psi|^{1/2}} exp\left(-\frac{1}{2}(x^{(i)} - \mu)^{T} (\Lambda \Lambda^{T} + \Psi)^{-1} (x^{(i)} - \mu)\right).$$

ICT 400 pply EM algorithm to estimate  $\Lambda$ .

Page 2 of 3

4B. Consider a coin-flipping experiment in which you are given a pair of coins A and B of unknown biases  $\theta_A$  and  $\theta_B$  respectively (i.e., on any given flip, coin A will land on heads with probability  $\theta_A$  and on tail with probability  $(1 - \theta_A)$ , similarly for coin B). Consider the dataset collected using following procedure five times: labels of the coins are removed, now randomly choose one of the two coin and perform ten independent coin tosses with the selected coin. Let  $x^i = j$  denotes j number of heads obtained during i-th set of experiment. The dataset obtained from this experiment are  $\{x^{(1)} = 5, x^{(2)} = 9, x^{(3)} = 8, x^{(4)} = 4, x^{(5)} = 7, \}$ . With initial estimate of biases  $\hat{\theta}_A^{(0)} = 0.6$  and  $\hat{\theta}_B^{(0)} = 0.5$ , apply EM algorithm to compute  $(\hat{\theta}_A^{(2)}, \hat{\theta}_B^{(2)})$ .

[3]

4C. Briefly discuss various types of inherent ambiguities associated with Independent Component Analysis (ICA).

[2]

5A. Consider Cocktail Party Problem (CPP), wherein sources are modeled by a random variable  $s \in \mathbb{R}^n$ , which is drawn according to some density  $p_s(s)$ . Now let another random variable be defined according to x = As, where  $x \in \mathbb{R}^n$  and  $A \in \mathbb{R}^{n \times n}$ . Here, matrix A is known as mixing matrix, and in order to find the sources we need to compute unmixing matrix  $W = A^{-1}$ , we can also write the observed variable as  $x = W^{-1}s$ . The density of observed variable x can be written as

$$p(x) = \prod_{i=1}^{n} p_s(w_i^T x) |W|,$$

where p(s) = g'(s) and g is a sigmodal function, which is defined as

$$g(s) = \frac{1}{1 + e^{-s}}.$$

The square matrix W is parameter in the model. Given a training set  $\{x^{(i)}; i=1,\ldots,m\}$  the likelihood function is given by

$$L(W) = \prod_{i=1}^{m} p(x^{(i)}).$$

Using maximum-likelihood estimate derive the expression for W.

[5]

5B. Consider a generic convex optimization problem

minimize 
$$f(x)$$
  
s.t.  $g_i(x) \leq 0, i = 1, ..., m$   
 $h_i(x) = 0, i = 1, ..., p$ 

where  $f, g_i$  are convex function, and  $h_i$  are affine functions, and x is optimizable variable. Write the primal and dual problem for the given constrain optimization problem. [3]

5C. Why do you need to pre-process the data before applying Principal Component Analysis?

List those pre-processing steps.

[2]