Reg. No.		

VII SEMESTER B.TECH. (INFORMATION TECHNOLOGY/ COMPUTER & COMMUNICATION ENGINEERING)

END SEMESTER EXAMINATIONS, NOVEMBER 2017

SUBJECT: PROGRAM ELECTIVE V.- NATURAL COMPUTING [ICT 4011]

REVISED CREDIT SYSTEM (25/11/2017)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ♦ Answer ALL questions.
- Missing data if any, may be suitably assumed.
- 1A. Design a Turing Machine to accept the language L, of strings over $\Sigma = \{a, b, c\}$ such that $L = \{a^n b^n c^n \mid n \ge 1\}$
- 18. Design the transition set for a Pushdown Automata, to accept a language 3 $L = \{a^nb^{2n} \mid n \ge 0\}$, over $\Sigma = \{a, b\}$.
- 1C. Design a DFA, to accept a language $L = \{w \mid |w| \mod 3 \ge |w| \mod 2\}$, over $\sum = \{a\}$, where $w \in \sum^*$.
- 2A. Explain with the help of an example, the steps involved in the process of designing 5 scaffolded DNA Origami.
- 2B. Compute the function f (i, v, j) used to solve the SAT problem by abstract Tile Assembly Model, for the formula $F = (x \lor y \lor z) \land (\bar{x} \lor \bar{y} \lor \bar{z}) \land (\bar{x} \lor \bar{y} \lor z)$, given i = (1, 0, 1) and v = (x, y, z).
- Demonstrate the subset construction method to convert the following NEA (transitions shown in Table Q.2C) to DFA.

Table Q.2C

δ	0	1
>A	{ A, B}	{A,C}
В	{D}	Ø
C	Ø	{D}
*D	{D}	{D}

ICT 4011

3

3A. Explain in detail the steps involved in Paddy Field Algorithm.

5

3

- 3B. Demonstrate the generation of a binary counter using the DNA Tile Assembly Model.
 - 2
- 3C. Describe with the help of an example the process used in extracting the result in Adleman's approach of solving the Hamiltonian Path Problem in a graph.
- Apply the DNA Computation operations to solve the minimal cover set problem using the sticker model for the given data. Objects = {1, 2, 3, 4, 5} and Bags = {{1, 2, 4}, {2, 5, 4}, {2, 4}, {1, 3, 5}}. Indicate all the steps along with the DNA operations.
- 4B. Compute the evolution of the cells for time t = 1, 2 using the rules of game of life and periodic boundary condition for the given Cellular Automata at t = 0 in Fig. Q.4B, and also state its configuration. [Note: Shaded cells]

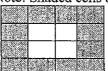


Fig. O.4B

- 4C. Illustrate with the help of a quantum circuit how the bell states can be generated.
- 3

3

- **5A.** Design a P-system of degree 4 that generates n^2 , for any integer $n \ge 1$. Show the computations for n = 1 and n = 3.
- 58. Compute the unitary operation performed by the circuit given in Fig. Q.5B, given 3 two single qubit gates, $U_1 = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$ and $U_2 = \begin{bmatrix} c & g \\ f & h \end{bmatrix}$. Write the 4 x 4 matrix for the unitary operation.

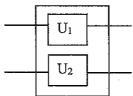


Fig. O.5B

5C. Describe how peptide computing can be used to compare the quantity of an element

7)

in two intimices.