Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent Institution of MAHE, Manipal)

VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKEUP EXAMINATIONS, DECEMBER 2017

SUBJECT: ADVANCED DIGITAL SIGNAL PROCESSING [ELE 4012]

REVISED CREDIT SYSTEM

Time: 3 HoursDate: 28 December 2017Max. MarkInstructions to Candidates: Answer ALL the questions. Missing data may be suitably assumed.1A. Consider the multi-rate structure with input transform $X(e^{im})$ and filter response $H_0(e^{im})$ and $H_1(e^{im})$ as shown in Fig. Q1A. Sketch the following (i) $X_1(e^{im})$; (ii) $X_2(e^{im})$; (iii) $Y_0(e^{im})$ and (iv) $Y_1(e^{im})$ 1B. Determine the transfer function from each input to each output for the multi-rate discrete-time system shown in Fig.Q1B and also show that the system is time-invariant.1C. Developed an expression for the output $y[n]$ as a function of input $x[n]$ for multi-rate structure shown in Fig.Q1C.2A. Develop a computationally efficient realization of a factor of 3 decimator employing a length of 7 linear phase FIR low pass filter. Use the symmetry of the impulse response.2B. Design an efficient two stages decimator with two suitable pair of decimation factors for the following specification: Input sampling frequency : 90 kHz; Decimation factor : 30; New output frequency : 3 kHz The highest frequency of interest after decimation: 1.125 kHz; Overall passband ripple $\delta_p = 0.05$ and stopband ripple $\delta_p = 0.01$. Justify the answer with appropriate detailed analysis of computational and storage complexities.2C. Consider a random experiment where a fair six sided die is thrown once. Its sample space is, $S = \{1, 2, 3, 4, 5, 6\}$ and the following events are defined as: $A_1 = \{2, 4, 6\}$ -an even number turns up, $A_2 = \{2, 3, 5\}$ - an prime number turns up Find $P(A_i A_2)$ 3A. (i)Prove that the variance of Random Variable X is given as: $Var(X) = E\{X^2\} - (E\{X\})^2$ (ii)List the important properties of power spectral density (PSD)			
 Answer ALL the questions. Missing data may be suitably assumed. 1A. Consider the multi-rate structure with input transform X (e^{iω}) and filter response H₀(e^{iω}) and H₁(e^{iω}) as shown in Fig. Q1A. Sketch the following (i) X₁(e^{iω}); (ii) X₂(e^{iω}); (iii) Y₀(e^{iω}) and (iv) Y₁(e^{iω}) 1B. Determine the transfer function from each input to each output for the multi-rate discrete-time system shown in Fig.Q1B and also show that the system is time-invariant. 1C. Developed an expression for the output y[n] as a function of input x[n] for multi-rate structure shown in Fig.Q1C. 2A. Develop a computationally efficient realization of a factor of 3 decimator employing a length of 7 linear phase FIR low pass filter. Use the symmetry of the impulse response. 2B. Design an efficient two stages decimator with two suitable pair of decimation factors for the following specification: Input sampling frequency : 90 kHz; Decimation factor : 30; New output frequency : 3 kHz The highest frequency of interest after decimation : 1.25 kHz; Overall passband ripple δ_p = 0.05 and stopband ripple δ_s = 0.01. Justify the answer with appropriate detailed analysis of computational and storage complexities. 2C. Consider a random experiment where a fair six sided die is thrown once. Its sample space is, S = {1, 2, 3, 4, 5, 6} and the following events are defined as: A₁ = {2, 4, 6} -an even number turns up, A₂ = {2,3, 5} - an prime number turns up Find P(A₁ A₂) 3A. (i)Prove that the variance of Random Variable X is given as: Var(X)=E{X²}-(E{X²})² 			ks: 50
 1A. Consider the multi-rate structure with input transform X (e^{im}) and filter response H₀(e^{im}) and H₁(e^{im}) as shown in Fig. Q1A. Sketch the following (i) X₁(e^{im}); (ii) X₂(e^{im}); (iii) Y₀(e^{im}) and (iv) Y₁(e^{im}) 1B. Determine the transfer function from each input to each output for the multi-rate discrete-time system shown in Fig.Q1B and also show that the system is time-invariant. 1C. Developed an expression for the output y[n] as a function of input x[n] for multi-rate structure shown in Fig.Q1C. 2A. Develop a computationally efficient realization of a factor of 3 decimator employing a length of 7 linear phase FIR low pass filter. Use the symmetry of the impulse response. 2B. Design an efficient two stages decimator with two suitable pair of decimation factors for the following specification: Input sampling frequency : 90 kHz; Decimation factor : 30; New output frequency : 3 kHz The highest frequency of interest after decimation : 1.25 kHz; Overall passband ripple δ_p = 0.05 and stopband ripple δ_s = 0.01. Justify the answer with appropriate detailed analysis of computational and storage complexities. 2C. Consider a random experiment where a fair six sided die is thrown once. Its sample space is, S = {1, 2, 3, 4, 5, 6} and the following events are defined as: A₁ = {2, 4, 6} -an even number turns up, A₂ = {2,3, 5} - an prime number turns up Find P(A₁ A₂) 3A. (i)Prove that the variance of Random Variable X is given as: Var(X)=E{X²}-(E{X})² 	Instr	✤ Answer ALL the questions.	
$H_{0}(e^{j\omega}) \text{ and } H_{1}(e^{j\omega}) \text{ as shown in Fig. Q1A. Sketch the following (i) } X_{1}(e^{j\omega}) ; (ii) X_{2}(e^{j\omega}) ; (iii) Y_{0}(e^{j\omega}) \text{ and (iv) } Y_{1}(e^{j\omega})$ 1B. Determine the transfer function from each input to each output for the multi-rate discrete-time system shown in Fig.Q1B and also show that the system is time-invariant. 1C. Developed an expression for the output $y[n]$ as a function of input $x[n]$ for multi-rate structure shown in Fig.Q1C. 2A. Develop a computationally efficient realization of a factor of 3 decimator employing a length of 7 linear phase FIR low pass filter. Use the symmetry of the impulse response. 2B. Design an efficient two stages decimator with two suitable pair of decimation factors for the following specification: Input sampling frequency : 90 kHz; Decimation factor : 30; New output frequency : 3 kHz The highest frequency of interest after decimation : 1.25 kHz; Overall passband ripple $\delta_{p} = 0.05$ and stopband ripple $\delta_{s} = 0.01$. Justify the answer with appropriate detailed analysis of computational and storage complexities. 2C. Consider a random experiment where a fair six sided die is thrown once. Its sample space is, $S = \{1, 2, 3, 4, 5, 6\}$ and the following events are defined as: $A_{1} = \{2, 4, 6\}$ -an even number turns up, $A_{2} = \{2, 3, 5\}$ - an prime number turns up Find $P(A_{1} A_{2})$ 3A. (i)Prove that the variance of Random Variable X is given as: $Var(X) = E\{X^{2}\} - (E\{X\})^{2}$		• Missing data may be suitably assumed.	
discrete-time system shown in Fig.Q1B and also show that the system is time- invariant. 1C. Developed an expression for the output $y[n]$ as a function of input $x[n]$ for multi-rate structure shown in Fig.Q1C. 2A. Develop a computationally efficient realization of a factor of 3 decimator employing a length of 7 linear phase FIR low pass filter. Use the symmetry of the impulse response. 2B. Design an efficient two stages decimator with two suitable pair of decimation factors for the following specification: Input sampling frequency : 90 kHz; Decimation factor : 30; New output frequency : 3 kHz The highest frequency of interest after decimation : 1.25 kHz ; Overall passband ripple $\delta_p = 0.05$ and stopband ripple $\delta_s = 0.01$. Justify the answer with appropriate detailed analysis of computational and storage complexities. 2C. Consider a random experiment where a fair six sided die is thrown once. Its sample space is, $S = \{1, 2, 3, 4, 5, 6\}$ and the following events are defined as: $A_1 = \{2, 4, 6\}$ -an even number turns up, $A_2 = \{2,3,5\}$ - an prime number turns up Find $P(A_1 A_2)$ 3A. (i)Prove that the variance of Random Variable X is given as: $Var(X) = E\{X^2\} - (E\{X\})^2$	1A.	$H_0(e^{j\omega})$ and $H_1(e^{j\omega})$ as shown in Fig. Q1A. Sketch the following (i) $X_1(e^{j\omega})$; (ii)	(04)
 24. Develop a computationally efficient realization of a factor of 3 decimator employing a length of 7 linear phase FIR low pass filter. Use the symmetry of the impulse response. 28. Design an efficient two stages decimator with two suitable pair of decimation factors for the following specification: Input sampling frequency : 90 kHz; Decimation factor : 30; New output frequency : 3 kHz The highest frequency of interest after decimation : 1.25 kHz; Overall passband ripple δ_p = 0.05 and stopband ripple δ_s = 0.01. Justify the answer with appropriate detailed analysis of computational and storage complexities. 26. Consider a random experiment where a fair six sided die is thrown once. Its sample space is, S = {1, 2, 3, 4, 5, 6} and the following events are defined as: A₁ = {2, 4, 6} -an even number turns up, A₂ = {2,3, 5} - an prime number turns up Find P(A₁ A₂) 34. (i)Prove that the variance of Random Variable X is given as: Var(X)=E{X²}-(E{X})² 	1B.	discrete-time system shown in Fig.Q1B and also show that the system is time-	(04)
 2A. Develop a computationally efficient realization of a factor of 3 decimator employing a length of 7 linear phase FIR low pass filter. Use the symmetry of the impulse response. 2B. Design an efficient two stages decimator with two suitable pair of decimation factors for the following specification: Input sampling frequency : 90 kHz; Decimation factor : 30; New output frequency : 3 kHz The highest frequency of interest after decimation : 1.25 kHz; Overall passband ripple δ_p = 0.05 and stopband ripple δ_s = 0.01. Justify the answer with appropriate detailed analysis of computational and storage complexities. 2C. Consider a random experiment where a fair six sided die is thrown once. Its sample space is, S = {1, 2, 3, 4, 5, 6} and the following events are defined as: A₁ = {2, 4, 6} -an even number turns up, A₂ = {2,3, 5} - an prime number turns up Find P(A₁ A₂) 3A. (i)Prove that the variance of Random Variable X is given as: Var(X)=E{X²}-(E{X})² 	1C .	Developed an expression for the output $y[n]$ as a function of input $x[n]$ for multi-rate	
 length of 7 linear phase FIR low pass filter. Use the symmetry of the impulse response. 2B. Design an efficient two stages decimator with two suitable pair of decimation factors for the following specification: Input sampling frequency : 90 kHz; Decimation factor : 30; New output frequency : 3 kHz The highest frequency of interest after decimation : 1.25 kHz; Overall passband ripple δ_p = 0.05 and stopband ripple δ_s = 0.01. Justify the answer with appropriate detailed analysis of computational and storage complexities. 2C. Consider a random experiment where a fair six sided die is thrown once. Its sample space is, S = {1, 2, 3, 4, 5, 6} and the following events are defined as: A₁ = {2, 4, 6} -an even number turns up, A₂ = {2,3, 5} - an prime number turns up Find P(A₁ A₂) 3A. (i)Prove that the variance of Random Variable X is given as: Var(X)=E{X²}-(E{X})² 		structure shown in Fig. Q1C.	(02)
for the following specification: Input sampling frequency : 90 kHz; Decimation factor : 30; New output frequency : 3 kHz The highest frequency of interest after decimation : 1.25 kHz ; Overall passband ripple $\delta_p = 0.05$ and stopband ripple $\delta_s = 0.01$. Justify the answer with appropriate detailed analysis of computational and storage complexities. 2C. Consider a random experiment where a fair six sided die is thrown once. Its sample space is, $S = \{1, 2, 3, 4, 5, 6\}$ and the following events are defined as: $A_1 = \{2, 4, 6\}$ -an even number turns up, $A_2 = \{2, 3, 5\}$ - an prime number turns up Find $P(A_1 A_2)$ 3A. (i)Prove that the variance of Random Variable X is given as: $Var(X) = E\{X^2\} - (E\{X\})^2$	2A.		(04)
with appropriate detailed analysis of computational and storage complexities. 2C. Consider a random experiment where a fair six sided die is thrown once. Its sample space is, $S = \{1, 2, 3, 4, 5, 6\}$ and the following events are defined as: $A_1 = \{2, 4, 6\}$ -an even number turns up, $A_2 = \{2, 3, 5\}$ - an prime number turns up Find $P(A_1 A_2)$ 3A. (i)Prove that the variance of Random Variable X is given as: $Var(X) = E\{X^2\} - (E\{X\})^2$	2B.	for the following specification: Input sampling frequency : 90 kHz; Decimation factor : 30; New output frequency : 3 kHz	
with appropriate detailed analysis of computational and storage complexities. 2C. Consider a random experiment where a fair six sided die is thrown once. Its sample space is, $S = \{1, 2, 3, 4, 5, 6\}$ and the following events are defined as: $A_1 = \{2, 4, 6\}$ -an even number turns up, $A_2 = \{2, 3, 5\}$ - an prime number turns up Find $P(A_1 A_2)$ 3A. (i)Prove that the variance of Random Variable X is given as: $Var(X) = E\{X^2\} - (E\{X\})^2$		Overall passband ripple $\delta_n = 0.05$ and stopband ripple $\delta_s = 0.01$. Justify the answer	
Find $P(A_1 A_2)$ 3A. (i)Prove that the variance of Random Variable X is given as: $Var(X) = E\{X^2\} - (E\{X\})^2$	2C.	with appropriate detailed analysis of computational and storage complexities. Consider a random experiment where a fair six sided die is thrown once. Its sample	(04)
3A. (i)Prove that the variance of Random Variable X is given as: $Var(X) = E\{X^2\} - (E\{X\})^2$		$A_1 = \{2, 4, 6\}$ -an even number turns up, $A_2 = \{2, 3, 5\}$ - an prime number turns up	
$Var(X) = E\{X^2\} - (E\{X\})^2$		Find $P(A_1 A_2)$	(02)
	3A.		
			(03)

3B. Consider a random process is described by $X(t) = \cos(2\pi F_0 t + \theta)$,

where F_0 is constants and θ is random variable which is uniformly distributed over the interval $(-\pi,\pi)$. Show that X(t) is stationary in the mean and stationary in autocorrelation and hence X(t) is wide-sense stationary (WSS)? (03)

3C. A random process signal X(t) has autocorrelation function $R_{XX}(t)$ given as

$$R_{XX}(\tau) = \frac{1}{4a} e^{-a|\tau|}$$
 where, a=7 kHz. Obtain the following: is

(i) the average power (ii) the power spectral density (PSD) of the random signal (iii) BW required which contains 85% of the signal power. (04)

- **4A.** Consider an LTI system that is characterized by impulse response h(t). Show that if the input signal X(t) applied to above LTI system is a wide-sense stationary random process, then the random output response Y(t) from the system is also wide-sense stationary process.
- **4B.** If the sample sequence of a random process has N = 2500 samples.

Determine (i) the frequency resolution of the Bartlett, Welch (for 50% overlap), and Blackman-Tukey methods for a quality factor Q = 20.

(ii) the record lengths (M) for the Bartlett, Welch (for 50% overlap), and Blackman-Tukey methods.

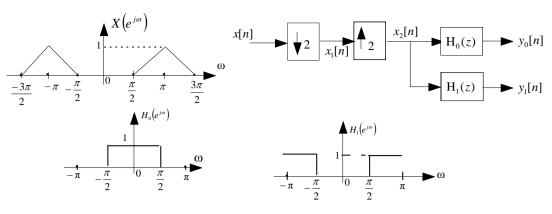
4C. Considering the single realization of the random process show that the period-gram estimate

 $P_{xx}(f)$ is given by

$$P_{xx}(f) = \frac{1}{N} |X(f)|^2$$
 where $X(f)$ is the Fourier transform of the sample sequence $x[n]$ (03)

- 5A. What are the advantages of Wavelet Transform?
- **5B.** Determine the 2D DWT Haar decomposition of 2D pixel values.

25	21	67	13
9	41	56	48
12	15	34	18
23	47	33	25


Also reconstruct the pixel values from the decomposed pixel values with threshold value of 5 **(03)**

5C. Consider the DSP system used for noise cancellation application as shown in Figure in which d(0)=3, d(1)=-2, d(2)=1, x(0)=3, x(1)=-1, x(2)=2, and there is an adaptive filter with two taps y(n)=w(0)x(n)+w(1)x(n-1)+w(2)x(n-2) with initial values w(0)=0, w(1)=0, w(2)=0 and u=0.2. Determine LMS algorithm equations for the adaptive filter. Also, perform adaptive filtering for each of n=0, 1, 2.

(04)

(03)

(02)

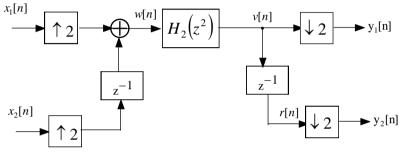


Fig.Q1B

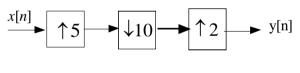


Fig.Q.1C

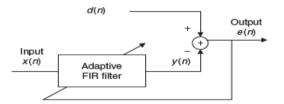


Fig. Q5C