Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL A Constituent Institution of Manipal University

VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

END SEMESTER EXAMINATIONS, NOVEMBER 2017

SUBJECT: ADVANCED DIGITAL SIGNAL PROCESSING [ELE 4012]

REVISED CREDIT SYSTEM

Time	e: 3 Hours Date: 23 Novem	ber 2017	Max. Marks: 50
Instr	 ructions to Candidates: Answer ALL the questions. Missing data may be suitably assumed. 		
1A.	Consider the multi-rate structure shown in Fig. Q is response $H_0(e^{j\omega})$, $H_1(e^{j\omega})$ and $H_2(e^{j\omega})$. Sketch the		
	(iii) $Y_0(e^{j\omega})$; (iv) $Y_1(e^{j\omega})$ and (iv) $Y_2(e^{j\omega})$		(04)
1B.	A sequence $x[n]$ up-sampled by 2, is passed thro down-sampled by 2 as shown in Fig. Q1B. Is it poss LTI system $H_2(z)$? If possible then determine the system	sible to replace this process v	with a single
1C.	Developed an expression for the output $y[n]$ as structure shown in Fig. Q1C. Also mention and pr	-	
	reducing the structure to obtain $y[n]$.		(03)
2A.	Develop a computationally efficient realization of a of 9 linear phase FIR low pass filter. Use the symme	1.0	ving a length (04)
2B.	Design an efficient two stages decimator with two s following specification:	uitable pair of decimation fac	
	Input sampling frequency : 60 kHz; Decimation fact The highest frequency of interest after decimation :		/:5 KHZ
	Overall passband ripple $\delta_p = 0.05$ and stopband	ripple $\delta_{\epsilon} = 0.01$. Justify the a	answer with
	appropriate detailed analysis of computational and		(04)
2C.	Prove that if the two events A and B are not disjoint is defined by:	then the probability of their	union event
	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$		(02)
3A.	If X be a continuous random variable with PDF		
	$\int 4x^{-2}$; for $2 < x < 4$		
	$F_{x}(x) = \begin{cases} 4x^{-2} ; \text{ for } 2 < x < 4 \\ 0 ; \text{ otherwise} \end{cases}$		
	Find the Variance of random variable X .		(02)

3B. Consider a random process X(t) is described by $X(t) = A\cos(2\pi F_0 t + \phi)$,

where $A \& F_0$ are constants. ϕ is random variable which is uniformly distributed over the interval $(-\pi, \pi)$. Determine whether X(t) is wide-sense stationary (WSS)? (03)

3C. A random process signal X(t) has autocorrelation function $R_{XX}(\tau)$ given as

$$R_{XX}(\tau) = \frac{1}{2a}e^{-a|\tau|}$$
 where, a=5 kHz. Obtain the following:

(i) the average power (ii) the power spectral density (PSD) of the random signal (iii) Bandwidth required which contains 90% of the signal power. (05)

- 4A. Show that when a wide-sense stationary (WSS) random process signal X(t) is applied as an input to an LTI system whose impulse response is h(t), then the random output response Y(t) is also wide-sense stationary (WSS) process.
- **4B.** If the sample sequence of a random process has N = 1000 samples. Determine (i) the frequency resolution of the Bartlett, Welch (for 50% overlap), and Blackman-Tukey methods for a quality factor Q = 10.

(ii) the record lengths (M) for the Bartlett, Welch (for 50% overlap), and Blackman-Tukey methods.

4C. Considering the single realization of the random process show that the estimate of the power Spectrum density is given by

$$P_{xx}(f) = \frac{1}{N} |X(f)|^2 \text{ where } X(f) \text{ is the Fourier transform of the sample sequence } x[n]$$
(03)

- **5A.** What is STFT? How is it related to Continuous time Wavelet Transform? (02)
- **5B.** Draw 1D analysis and synthesis filter bank for DWT and explain function of each block. **(04)**
- **5C.** Consider the DSP system used for noise cancellation application as shown in Fig.Q5C in which d(0)=3, d(1)=-2, d(2)=1, x(0)=3, x(1)=-1, x(2)=2, and there is an adaptive filter with two taps y(n)=w(0)x(n)+w(1)x(n-1) with initial values w(0)=0, w(1)=1, and u=0.1. Determine LMS algorithm equations for the adaptive filter. Also, perform adaptive filtering for each n=0, 1, 2. (04)

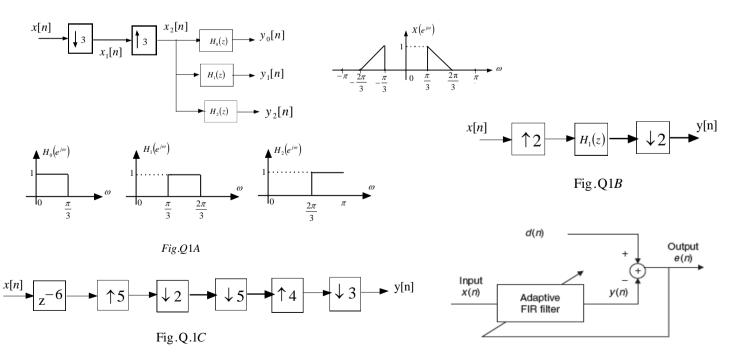


Fig.Q5C

ELE 4012

(03)