Reg. No.

VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKEUP EXAMINATIONS, DECEMBER 2017

SUBJECT: APPLICATIONS OF DSP [ELE 4014]

REVISED CREDIT SYSTEM

	e: 3 Hours Date: 30 December 2017 Max. Ma	arks: 50	
Instr	ructions to Candidates:		
	 Answer ALL the questions. 		
	 Missing data may be suitably assumed. 		
1A.	Define 2D discrete space unit impulse function. What is its Fourier transform?	(03)	
	Sketch the sequence $f[x, y] = \delta[2x - y]$.	(03)	
1B.	State and prove the convolution in spatial domain property of 2D discrete space Fourier transforms.	(03)	
1C .	What are multiplicatively and additively separable functions in continuous space domain? Prove or disprove the statement "if the 2D function is multiplicatively separable then its Fourier transform also multiplicatively separable."	(04)	
2A.	State and explain Nyquist sampling theorem applicable to 2D signals.	(03)	
	Write relevant expressions for 2D sampling and its effect in the frequency domain.		
2B.	What is histogram of an image? What do you achieve by histogram equalization?	(03)	
2C.	Filter the following (4×4) image using a (3×3) neighborhood averaging by assuming zero padding on the boundary.	(04)	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
3A.	The gray level probability density function of an image is given by $f[r] = 5e^{-5r}$, $0 \le r \le 1$. Which of the transformations $s = r^2$ or $s = r^{0.5}$ would produce a better image? Explain.	(02)	
3B.	Analyze a (3×3) mean filter in the frequency domain and prove that it behaves like a low pass filter.	(04)	
3C.	(i) Explain the block diagram model for image degradation/restoration.(ii) Write short notes on noise models.	(04)	
4A.	An (8×8) image $f[x, y]$ has gray levels given by the following equation: f[x, y] = x - y ; $x, y = 0, 1, 2, 3, 4, 5, 6, 7.Find the output image obtained by applying a (3 \times 3) median filter on the image f[x, y];$	(04)	
4B.	ignore the border pixels.Write short notes on Butterworth low pass filter. Is it possible to construct a high pass filter using a low pass and an all pass filter? If yes, how? If no, why?	(02)	

4C.	Derive a (3×3) Laplacian kernel for edge detection by second order derivatives method. Mention its drawbacks.	(04)
5A.	Explain the following morphological operations: (i) Erosion (ii) Dilation	(03)
FD		(0.2)
5B.	Derive expressions for 1D-DCT using DFTs. Use the same to write expression for 2D-DCT.	(03)
5C.	Write short notes on (i) Canny edge detection, (ii) Hit-or-miss transform	(04)