Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent Institution of MAHE, Manipal)

VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

MAKEUP EXAMINATIONS, DECEMBER 2017

SUBJECT: DATA STRUCTURES & ALGORITHMS [ELE 4018]

REVISED CREDIT SYSTEM

tru	ictions to Ca	ndidates:						
	✤ Answer	ALL the ques	tions.					
	 Missing 	data may be s	uitably assum	ned.				
Α	Solve the following recurrences: (assume T (0) = T (1) =1)							
	i)	T(n) = 16T(n)						
	ii)	T(n) = 3T(n)						
	iii)	T(n) = 3T(n)						
	iv)	T(n) = T(n-	-					
	v)	T(n) = T(n-1)	L) + n					
D							ı ·	
B	Explain the concept of asymptotic notations as applicable to algorithm analysis.							
٨	Write a neared and algorithm to find the manimum alament and its index in an						day in an	
Α	Write a pseudo code algorithm to find the maximum element and its index in an							
	unsorted array. Also obtain the time complexity for the code.							
B	Write a pseudo code algorithm to display the contents of an ordinary queue. Also							
	highlight the criteria for implementing a queue data structure.							
	mgingin			ung a queue				
A	With suita	With suitable examples compare and define strictly binary search tree and a complete						
	binary search tree?							
	9							
BB	Write a pseudo code algorithm to check if a given graph is connected or							
	disconnected. Trace the algorithm for a given graph and obtain the time complexity							
	for the code.							
A	Write a ps	seudo code a	lgorithm to r	eturn the dat	ta in 'n' th no	de of the link	ed list.	
B	Fill a 20ml bottle with the contents shown below, to maximize the value of the							
	bottle.							
	Item	1	2	3	4	5		
	Weight	4	8	2	6	1		
	Cost	Rs 12	Rs 32	Rs 40	Rs 30	Rs 50	1	

5A Show how Karatsuba's algorithm improves the time complexity of multiplying two large integers. Trace the algorithm for multiplying 1245 and 0398.

05

5B Given a set of non-negative integers A = [1, 3, 5, 11], and a value sum W=6, determine and illustrate if there is a subset of the given set with sum equal to given sum. Clearly show all the steps.