Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL A Constituent Institution of Manipal University

VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

END SEMESTER EXAMINATIONS, NOVEMBER 2017

SUBJECT: LINEAR ALGEBRA AND ITS APPLICATIONS TO ELECTRICAL ENGINEERING [ELE 4030]

REVISED CREDIT SYSTEM

Time	e: 3 Hours	Date: 21 November 2017	Max. Marks: 50
Instr	uctions to Candidates:		
	 Answer ALL the q 	uestions.	
	 Missing data may 	be suitably assumed.	
1A.	Define norm of a vecto vector/matrix.	or with relevant axioms. Find L_0 , L_1 , and L_∞ no	rms of the following

$$A = (i, 2, 1-i, 0, 1+i)^{T}; B = \begin{pmatrix} 1 & 4 & 0 \\ 4 & 12 & 4 \\ 0 & 4 & 0 \end{pmatrix}.$$
 (03)

1B. Consider the vectors $u = (2, 1, -4, -2)^T$ and $v = (1, -1, 1, -1)^T$.

- (i) Determine the Euclidean distance between *u* and *v*.
- (ii) Verify that the triangle inequality holds for u and v. (02)
- **1C.** If $x, y \in \mathbb{R}^n$, prove or disprove ||x y|| = ||y x|| is true for all norms. (03)
- **1D.** Given the linear system Ax = b.

What are the three possibilities for the set of solutions? What is the condition for the system to be consistent? (02)

2A. Reduce the following system to *RREF* (row reduced echelon form) using Gaussian elimination with backward/forward substitution.

$$v - w = 3$$
$$-2u + 4v - w = 1$$
$$-2u + 5v - 4w = -2$$

Find the solution using *RREF* if exists. Also mention whether the system is consistent. (04)

2B. Using Gauss-Jordan technique find the inverse of the following matrix:

$$P = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$$
 (03)

- **2C.** True or false? Give a counterexample if false and a reason if true.
 - (i) In Ax = b formulation, set of all possible x represent a vector space.
 - (ii) Number of basis vectors represents the dimension of the vector space. (03)
 - (iii) If Ax = 0 for $x \neq 0$, then *A* has no inverse.

3A. Describe the column space of *A*, null space of *A*, and the complete solution to Ax = b. Given:

$$A = \begin{pmatrix} 2 & 4 & 6 & 4 \\ 1 & 2 & 3 & 6 \\ 0 & 0 & 1 & 2 \end{pmatrix}; \text{ and } b = \begin{pmatrix} 4 \\ 3 \\ 5 \end{pmatrix}.$$
 (04)

3B. What is rank of a matrix? Explain the rank-nullity theorem.

3C. For which numbers *c* and *d* do these matrices have rank 2?

$$B = \begin{pmatrix} c & d \\ d & c \end{pmatrix}.$$
 (02)

- **3D.** State and explain any four properties of determinants.
- 4A. Derive expressions for determining unknown parameters of a circle to be fitted over sparsely spaced data points using least squares-based Kasa's circle-fitting technique. (04)
- **4B.** Find q_1 , q_2 , and q_3 (orthogonal vectors) as combinations of a, b and c (independent vectors) in G.

$$G = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 0 & 5 \\ 0 & 3 & 6 \end{pmatrix}$$
(04)

4C. Prove that the orthogonal matrices preserve length of a vector and inner product between vectors. *(02)*

5A. Is 5 an eigenvalue of
$$A = \begin{pmatrix} 6 & -3 & 1 \\ 3 & 0 & 5 \\ 2 & 2 & 6 \end{pmatrix}$$
? (02)

5B. Find the algebraic and geometric multiplicities of *A*. Diagonalize the following matrix *A*, if

possible.
$$A = \begin{pmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{pmatrix}$$
 (04)

- **5C.** Prove or disprove that the symmetric matrices have real eigenvalues and orthogonal eigenvectors. (02)
- **5D.** What are positive definite and semi-definite matrices? Mention few advantages. (02)

(02)

(02)