Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent Institution of MAHE, Manipal)

VII SEMESTER B. TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

MAKE-UP EXAMINATIONS, JANUARY 2018

SUBJECT: REAL TIME SYSTEMS [ELE 4004]

REVISED CREDIT SYSTEM

Time: 3	Hours Date:	02 JANUARY 2018	Max. Marks: 50
	ions to Candidates:		
	• Answer ALL the questions.		
•	 Missing data may be suitably assun 	ned.	
1A.	Draw a basic block diagram model t each block in the model with the hel	for a real-time system and explain the wo p of an example	orking of (04)
1B.	identify the characteristics that are u examples of tasks in practical system	ified into periodic, aperiodic and sporad unique to each of the three categories of tas ms which belong to each of the three categ	sks. Give gories of
	tasks		(03)
1C.	Classify the real-time task schedulir are defined. Explain each one of ther	ng algorithms based on how the schedulin m.	g points (03)
2A.	1	us (all tasks are independent and are pre-er 1) of real-time system shown in Table 2A .	nptively
	i. Can the tasks set be scheduled Monotonic algorithm? Explain ye	using Earliest Deadline First algorithm a our answer.	nd Rate
	If the parameters of the system are period of 8ms, execution time of 4ms	e changed, such that T3 has release time s and deadline of 8ms.	of Oms,
	i. Can the new system task set be	scheduled using Earliest Deadline First al	gorithm
	and Rate Monotonic algorithm?	Explain your answer.	(04)
2B.		Rate Monotonic (RM) scheduler used for calculations for time demand analysis	task set (03)
2C.	for a timeline of T (0 to 10ms). Mer	e 2C using Earliest Deadline First (EDF) so ntion any one advantage and disadvantage	e of EDF
	Scheduler.		(03)
3A.	-	e used to schedule three periodic tasks v Suggest a suitable frame size that can be use lculations.	
3B.	following jobs to be run on a dual-pr Figure 3B . J1 (e1=3), J2 (e2=4), J3 (released at zero except for J2 which	reemptive and non-preemptive scheduling rocessor system. The precedence graph is g [e3=1), J4 (e4=2), J5 (e5=11). All the jobs a is released at 4ms. Assume Priority is high	given in re
	jobs with lower index.		(03)

- **3C.** Explain three types of Priority Inversions in the Priority Ceiling Protocol (PCP). What are the advantages of PCP over other priority protocols?
 - 4A. Design a deferrable server for the task set shown in Table 4A. Assume an aperiodic task with execution time 1.5ms arrives quite at random in every 8ms. Use pre-emptive RM scheduler for the system. Check for the system feasibility with server using analytical time demand approach. (04)
 - **4B.** Explain the working of Utilization balancing algorithm for task assignment in a multiprocessor real-time system. Give an example for working of the same.
 - **4C.** Write a pseudo-code to explain the working of focused addressing and bidding algorithm for distributed real-time systems. Mention the short-comings of algorithm **(03)**
 - **5A.** Explain in detail the modifications made to RM and EDF algorithms to handle task dependencies or precedence constraints. *(04)*
 - **5B.** What are the important requirements for an operating system to be called as real-time operating system? *(03)*
 - **5C.** A network is designed using IEEE 802.4 protocol has three nodes. Node 1 needs to transmit 2MB of data every 600ms. Node 2 needs to transmit 2.4MB of data every 1000ms. Node 1 needs to transmit 4MB of data every 400ms. Select a suitable Target Token Rotation Time (TTRT) for the network and compute the token holding time for each node.

Task set	Release time(ms)	Period(ms)	Execution time(ms)	Dead line(ms)
T1	0	2	0.4	2
T2	1	4	1	4
Т3	0	5	1.5	5

Table 2B

Task	Period(ms)	Execution(ms)	Dead line(ms)
T1	3	1	3
T2	5	2	5
T3	10	2	10

Table 2C

Task	Period(ms)	Execution(ms)
T1	2	1
T2	5	2.5

Table 3A

Task	Period(ms)	Execution(ms)	Dead line(ms)
T1	4	1	4
T2	5	2	5
Т3	20	5	20

Task	Period(ms)	Execution(ms)	Dead line(ms)
T1	3	0.5	3
T2	20	5	20
Т3	60	10	60

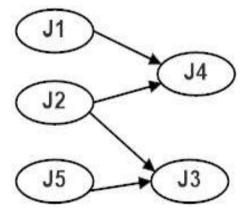


Figure 3B

(03)

(03)

(03)