Reg. No.

VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

END SEMESTER EXAMINATIONS, NOVEMBER 2017

SUBJECT: SOFT COMPUTING [ELE 4026]

REVISED CREDIT SYSTEM

Time	e: 2.00 – 5.00 Date: 21, November 2017 Max. Mark	s: 50							
Instr	uctions to Candidates:								
	 Answer ALL the questions. 								
	 Missing data may be suitably assumed. 								
1A.	A bipolar sigmoidal neural network has the initial weight vector $W^{(0)} = [1 - 1 \ 0 \ 0.5]^{t}$.								
	Two sets of training inputs and respective desired response are as given below:								
	$X_1 = [1 - 2 \ 0 - 1]^t$, $X_2 = [0 \ 1.5 - 0.5 - 1]^t$, $d_1 = -1$ and $d_2 = 0.5$.								
	Using delta learning rule obtain new vector $W^{(1)}$ after one iteration. Assume learning constant $c = 0.4$ function constant $\lambda = 1$.	(04)							
1B.	Design a discrete bipolar neural network to perform the following classification:								
	Class A – X ₁ = (-0.5, 2) X ₂ = (2, -1) output $d_A = -1$								
	Class B – X ₁ = (2, 0.5) X ₂ = (0.5, 1) output $d_B = 1$	(03)							
1C .	State whether the statements given below are correct or not. If not correct, mention reasons and write possible correct statement.								
	 (i) If energy level of a Hopfield network is positive, it is stable state. (ii) Unipolar signum activation function is a special case of sigmoidal activation functions, if λ =1. 								
	(iii) Neural network can be used as memory element.								
	(iv) Delta learning rule is not applicable for discrete neural network.	(03)							
2A.	Design and draw the schematic of a Hopfield network to store the following bit patterns:								
	$S_1 = [1 - 1 1 - 1]^t S_2 = [-1 1 - 1 1]^t and S_3 = [-1 - 1 1 1]^t.$								
	Draw the state transition diagram for asynchronous mode retrieval of stored pattern when an arbitrary input [1 1 1 1] ^t is initially applied to the network.								
2B.	A neural network has one input neuron A and two output neurons B and C. Two inputs X and Y connected to input neuron through weights 1.5 and 2 respectively. The output of input neuron is connected to output neurons B and C through weights 3 and -1 respectively.								
	For certain input X = - 0.5 and Y = 0.2, the desired outputs of B and C are 0.45 and -0.8 respectively. Input neuron has the activation function $f(net) = net$ and output neurons use bipolar activation functions with $\lambda = 1$.								
	Update all weights for one iteration using learning constant $c = 1.2$ by back propagation algorithm.	(06)							

- 3A. Define the following terms used in fuzzy system:(i) support (ii) alpha-cut (iii) convex
- 3B. Two fuzzy sets are defined as given below in a universe of discourse X[0:9]:
 A=triangular (0, 3, 5) and B = trapezoidal (3, 5, 6, 9). The truncation levels of A and B are 0.5 and 1.0 respectively during a fuzzy rule implication. Determine the crisp output X* by centroid method of defuzzification.
- **3C.** Relations R1 and R2 are as shown below:

$R_1 =$	0.2	0.3	0.5	0.8	0.9	0.1	$R_2 =$		0.6		
	0.4	0.8	1.0	0.7	0.5	0.3		0.6	0.4	0.8	0.5
	0.9	0.4	0.5	0.8	0.1	0.6		0.4	0.67	0.2	0.0
	0.3	0.6	0.9	0.8	0.5	0.2		0.5	0.2	0.7	0.4
	_					_		0.3	0.7	0.4	0.1

[0.7 0.8 1.0 0.15]

Obtain the composition $Q = R_1 \circ R_2$ by Mamdani max-min operation.

4A. Two linguistic variables A and B are defined as given below:

$$A = \left\{ \frac{0.5}{X_1} + \frac{1.0}{X_2} + \frac{0.6}{X_3} \right\} \quad B = \left\{ \frac{1.0}{Y_1} + \frac{0.4}{Y_2} \right\}$$

Given fuzzy inference, X is A^1 If X is A Then Y is B Y is B^1

Interpret fuzzy rule A -> B using (i) Lukasiewicz implication (ii) Dienes-Rescher implication.

For $A^1 = \left\{ \frac{0.6}{X_1} + \frac{0.9}{X_2} + \frac{0.7}{X_3} \right\}$ find B^1 in each implication. (04)

- **4B.** A fuzzy controller is to be designed for field current control method (speed is inversely proportional to field current) of speed control of a DC shunt motor. For a given terminal voltage and required speed, the field current is to be determined. The universe of discourse are VOLT [0:250], RPM [0:1200] and AMP [0.25: 1.25]. The design shall include
 - (i) Linguistic values and respective equation for triangular membership functions for all linguistic variables considered
 - (ii) List of IF-THEN rules required

Calculate crisp value of field current for a sample input of 220 V and 900 rpm using mean of maximum method of defuzzification. *(06)*

- 5A. Explain the terms with relevant illustrations as applied in Genetic Algorithm:(i) Fitness (ii) Crossover
- **5B.** Using Genetic Algorithm, optimize the function $f(x, y) = 1.5x^2 + 3y$ with boundary conditions of 3<x<6 and 1<y<5. Use a population size of 4 and 5-bit binary string representation of chromosome. (06)

(04)

(03)

(03)