Reg. No.

VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

END SEMESTER EXAMINATIONS, NOVEMBER 2017

SUBJECT: SOLID STATE DRIVES [ELE 4011]

REVISED CREDIT SYSTEM

REVISED CREDIT SYSTEM			
Time	3 HoursDate: 28 November 2017Max. Mar	'ks: 50	
Instructions to Candidates:			
	✤ Answer ALL the questions.		
	 Missing data may be suitably assumed. Use of sine graphs permitted. 		
1A.	Mention the various components of load torque. Explain how each of them is modelled.	(03)	
1B.	Derive the condition for the steady state stability of an equilibrium point.	(03)	
1C.	A 200 V, 875 rpm, 150 A separately excited dc motor has an armature resistance of 0.06 Ω . It is fed from a single phase fully-controlled rectifier with an ac source voltage of 220 V, 50 Hz. Assuming continuous conduction, calculate firing angle for rated motor torque at 750 rpm.	(04)	
2A.	A dc chopper is used for regenerative braking of a separately excited dc motor. DC supply voltage is 400 V. Motor has armature resistance of 0.2 Ω and motor constant is 1.2 volts/rad/sec. The average armature current during regenerative braking is kept constant at 300 A with negligible ripple for a duty cycle of 60%. Determine the maximum and minimum permissible braking speed.	(02)	
2B.	A 30 kW, 230 V, 860 rpm, 144 A dc motor has an armature resistance of 0.07 Ω . It is fed by a three phase fully controlled rectifier from an ac source of 170.3 V, 60 Hz. Assuming continuous conduction, calculate the speed for $\alpha = 120^{\circ}$, T = -400 rpm (obtained by the field current reversal). Also, plot the waveforms for the armature voltage and the armature current along with the complete triggering sequence.	(04)	
2C.	A 220 V, 1500 rpm, 11.6 A separately excited dc motor has armature resistance and inductance of 2 Ω and 28.36 mH respectively. This motor is controlled by a single phase fully controlled rectifier with controlled freewheeling. AC source voltage is230 V, 50 Hz. Identify the mode of operation and calculate the developed torque for $\alpha_n = 0^\circ$, $\alpha = 60^\circ$ and speed = 891 rpm.	(04)	
3A.	A 230 V, 600 rpm, 1 hp, 4 A dc motor has armature resistance of 7.5 Ω and inductance of 50 mH. Determine the minimum value of t _{on} for which the current is continuous at rated speed if the motor is controlled by a Class A chopper fed from a 240 V dc source operating at 500 Hz chopping frequency.	(03)	
3B.	With a neat circuit schematic, plot the waveforms for armature voltage and armature current for a Class B chopper along with the triggering sequence.	(03)	
3C.	A 2.4 kW, 220 V, 480 rpm, 12.8 A dc motor has the armature resistance and inductance of 2.2 Ω and 40 mH respectively. It is fed by a single phase fully controlled rectifier with an ac source voltage of 240 V, 60 Hz. Identify the mode and calculate the torque for $\alpha = 60^{\circ}$ and speed = 155 rpm.	(04)	

4A. With the help of a block schematic, explain the closed loop power factor control of a synchronous motor drive.

- **4B.** With the help of torque slip characteristics, explain the speed control of induction motor when operated with adjustable frequency at constant voltage. Mention the advantages and disadvantages of the same.
- **4C.** With the help of a suitable torque slip characteristics, explain why stator voltage control method of speed is best suited for a fan drive. Also, with a suitable schematic explain how direction of rotation can be reversed while employing stator voltage control technique to an induction motor.
- **5A.** With the help of a block schematic, explain the control technique employed for LCI synchronous motor drive. **(03)**
- **5B.** Mention the advantages of direct torque control technique over field oriented control technique. Draw the block schematic of direct torque control technique for an induction motor control application.
- 5C. With the help of suitable schematic, explain the working of a three phase half wave brushless dc motor drive. Also, plot the idealized torque/angle characteristics for the individual phases.

(03)

(03)

(04)

(03)