Reg. No.					

SEVENTH SEMESTER B.Tech. (E & C) DEGREE END SEMESTER EXAMINATION NOV 2017

SUBJECT: ANALOG MIXED SIGNAL DESIGN (ECE - 4013)

TIME: 3 HOURS MAX. MARKS: 50

Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.
- 1A. With a neat diagram explain mixed signal layout strategy used to improve the performance of analog circuitry.
- 1B. Design a current sink using V_{DD} =- V_{SS} =2.5V to sink a current of $10\mu A$.Estimate the minimum voltage across the current sink and the output resistance. Using the $10\mu A$ n-channel current sink, design 3 current sources with the value of $10\mu A$, $20\mu A$ and $50\mu A$, V_{gs} =1.2V, K_n =50 $\mu A/V^2$, K_p =17 $\mu A/V^2$,L=5 μm .
- 1C. Explain the term sensitivity with respect to current mirror. Estimate the variation in I_0 , for the above current mirror for V_{DD} changing from 2.4V to 2.6V.

(5+3+2)

- 2A. With neat diagram of analog design octagon, explain trade-offs and challenges present in the design of high performance amplifiers.
- 2B. Design a Tow-Thomas bi-quad for realizing band pass filter for Q=5, f_c = 1MHz. Assume C_1 = C_2 =10pf and g=62.83 μ S.
- 2C. Explain advantages of current-mode signal processing as compared to voltage-mode signal processing

(5+3+2)

- 3A. Consider the current mirror with source degeneration in which Iin=100µA.Each transistor has W/L =100µm/1.6µm, $R_s=5k\Omega$. Given that μ_n $C_{ox}=92\mu\text{A/V}^2$, $V_{thn}=0.8V,R_{ds}=128k\Omega$. Find the output resistance of the current mirror .Assume the body effect can be approximated by $gmb_2{=}0.2gm$
- 3B. Design 4th order 455kHz unity gain Butterworth LPF with normalized transfer function given by: $\frac{1}{s^4 + 2.613s^3 + 3.414s^2 + 2.613s + 1}$
- 3C. Using switched capacitor technique implement the passive RC first order LPF, so that product of RC is 1msec and 3dB frequency is 159Hz.

(5+3+2)

ECE -4013 Page 1 of 2

- 4A. A PMOS active loaded MOS differential amplifier has the following specifications: L=5 μ m, (W/L)_n=100, (W/L)_p=200 , μ _n C_{ox}=2 μ _pC_{ox}= 0.2 mA/V², I_{SS}=I_{bias}=0.8mA, R_{SS}=25k Ω ,V_{En,p}= 4V/ μ m. Find i) R₀ ii) A_d iii) A_{cm} iv)CMRR
- 4B. With neat block diagram explain the difference between nyquist rate and oversampling ADC's. What are the advantages of oversampled converters.?
- 4C. What are the advantages of fully differential style employed in Analog and Mixed signal circuit design?

(5+3+2)

- 5A. Sketch and explain the block diagram of a first-order sigma-delta modulator. Use a time discrete $H(z) = \frac{1}{z-1}.$ integrator with the transfer function
- 5B. Design 6 bit charge scaling DAC using a split array and find the value of the output voltage for i) $D_5D_4D_3D_2D_1D_0=100000$, ii) $D_5D_4D_3D_2D_1D_0=000001$. Assume $V_{ref}=5V$ and C=0.5pF
- 5C. With neat diagram explain phase compensated gm active RC lossy integrator.

(5+3+2)

ECE -4013 Page 2 of 2