Reg. No.					

SEVENTH SEMESTER B.Tech. (E & C) DEGREE END SEMESTER EXAMINATION NOV 2017

SUBJECT: RTL VERIFICATION USING VERILOG (ECE - 4021)

TIME: 3 HOURS MAX. MARKS: 50

Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.
- 1A. Apply LIST-L Scheduling algorithm for the given data flow graph shown in Fig.Q1A. Assume γ =4, M_1 = M_2 = M_3 = M_4 = M_5 =0; M_6 = M_7 =1; M_8 = M_9 = M_{10} = M_{11} =2. Draw the scheduled graph under resource constraints.
- 1B. Draw the Control and data flow graph(CDFG) for the statements A=B*C+D, while A>0, then A=A-1 else end loop.
- 1C. Explain about the steps of high level synthesis.

(5+3+2)

- 2A. Find the essential prime implicant for the set of prime implicants $F=\{C_1, C_2, C_3, C_4\}$ where $C_1=x_1'x_3'x_4'$, $C_2=x_1x_2$, $C_3=x_3x_4$, $C_4=x_2x_3'x_4'$ using ESPRESSO algorithm.
- 2B. Explain force directed scheduling algorithm with an example.
- 2C. Write the Verilog AMS code for the given expression to calculate i= C.dv/dt. The values can be suitably assumed.

(5+3+2)

- 3A. Construct an ROBDD for a 2 bit synchronous up counter. Also Apply ITE algorithm for the same.
- 3B. Consider the following state table, Minimize the states using Implication chart. Draw the reduced state diagram.

Present	Next State	Next state	Output (Z)	Output(Z)
State	When x=0	When X=1	When x=0	When x=1
A	A	В	0	0
В	D	С	0	1
С	F	Е	0	0
D	D	F	0	0
Е	В	G	0	0
F	G	G	0	1
G	A	F	0	0

3C. Explain heuristic minimization. What are all the different types of heuristic minimizers available.

(5+3+2)

ECE –4021 Page 1 of 2

- 4A. Write the Verilog analog mixed signal (V_{ams}) code for the circuit shown in Fig. Q4A.
- 4B. Determine the prime implicants for the following function using iterated consensus method F=x'z'+xyz'+xy'z'+xy'z.
- 4C. Explain Gajski' Y chart.

(5+3+2)

- 5A. Consider the scheduled graph for the given unscheduled dataflow graph shown in Fig:1 Apply clique partitioning algorithm and determine the operation binding resources for MUL and ALU. Show all the steps(comparability graph, conflict graph and operation binding solution).
- 5B. Determine the complement of the following function using Shannon's expansion theorem F=wx'y+w'xy+yz'+wxy'+wy'z'.
- 5C. Explain the process of Model checking verification technique.

(5+3+2)

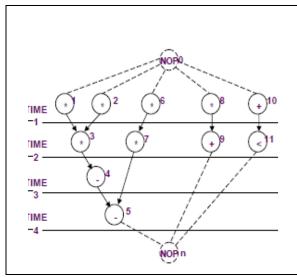
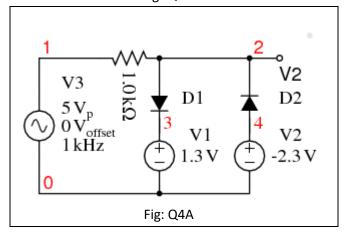



Fig: Q1A

ECE -4021 Page 2 of 2