

VII SEMESTER B.TECH (MECHANICAL ENGINEERING / INDUSTRIAL AND PRODUCTION ENGINEERING) END SEMESTER EXAMINATION – NOV 2017 SUBJECT: FINITE ELEMENT METHODS (MME 4102) REVISED CREDIT SYSTEM

Time: 3 Hours

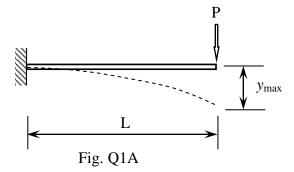
Max. Marks: 50

Note: (i) Missing data, if any, may be appropriately assumed (ii) Draw sketches as applicable (iii) Assumptions made must be clearly mentioned

1A. The potential energy of a cantilever beam subjected to point force at its free end is given by

$$\Pi = \frac{EI}{2} \int_{0}^{L} \left(\frac{d^2 y}{dx^2}\right)^2 dx - P y_{(x=L)}$$

where, y is the deflection of the beam, EI is the flexural rigidity and P is the point load.



- (i) Determine the maximum deflection (y_{max}) of a cantilever beam (shown in Fig. Q1A) which is subjected to a point load *P* at its free end. Use Rayleigh Ritz method assuming a cubic polynomial function.
- (ii) Based on the relationship of maximum deflection derived, calculate the y_{max} for L = 3m, P = 2 kN, for a section having flexural rigidity $EI = 2.67 \times 10^{10} \text{ N mm}^2$. 05
- 1B. Use Gaussian quadrature (2×2) rule to evaluate the double integrals:

(i)
$$\int_{0}^{1} \int_{0}^{2} xy \, dx \, dy$$
 (ii) $\int_{-1-1}^{+1+1} \left(r^2 + 2rs + s^2\right) dr \, ds$ 03

1C. List the general steps of FEM.

02

- 2A. Consider a triangular element with nodes 1, 2 and 3 with their (x, y) coordinates given as (20, 10), (80, 30) and (50, 70) respectively. A point *P* with (x, y) coordinates (50, 40) is located inside the triangular element.
 - (i) Use shape functions to determine the local coordinates (ζ , η) of point *P*.
 - (ii) Draw the element to scale and show the location of point P.
 - (iii) Determine the values of the shape functions at the point P.
 - (iv) The x and y displacement components at the nodes are given in Table Q 2A. Use shape functions to determine the x and y displacement components (u and v) at the point *P*.

	Nodal displacements		
Node #	x component	y component	
1	2 mm (acting to the right)	1 mm (acting downwards)	
2	3 mm (acting to the left)	2 mm (acting upwards)	
3	1 mm (acting to the right)	2 mm (acting upwards)	

Table Q 2A

- 2B. Derive the shape functions of a 4 noded quadrilateral element.
- 2C. With an example explain the reasons for using polynomials as displacement functions in FEM.
- 3A. For the discretized 1D aluminium bar shown in Fig. Q 3A the temperature at node 1 is given to be 200°C. The ambient temperature is 30°C. The thermal conductivity (K)of aluminium is 210 W/m °C. The convective heat transfer coefficient his 30 W/m^2 °C. Consider the heat transfer due to conduction. peripheral convection the from surface and free end convection from node 4.

¢ 80 mm 200° C. 1 2 3 1 2 3 4 80 mm 80 mm Fig. Q 3A

Neglect the free end convection from the left end at node 1. Determine the

- (i) temperatures at the nodes 2 through 4, and
- (ii) rate of heat flow in the 3 elements.

r using polynomials as displacement function

05

05

03

02

- 3B. Consider the bar shown in Fig. Q 3B. There is an increase in temperature of 60°C for both the materials. A point load of 1000N is acting at the interface of the two materials, as shown in the Fig. Use the data given in Table Q 3B. Apply FEM to determine:
 - (i) Global stiffness matrix
 - (ii) Global force vector

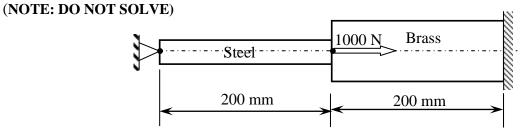
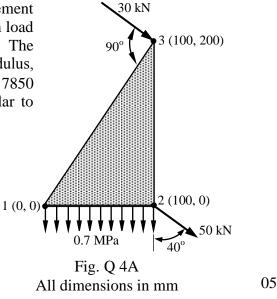
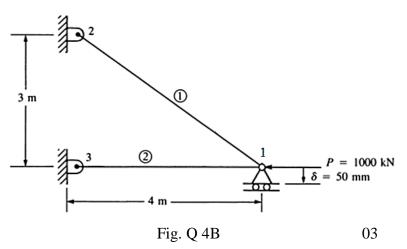


Table Q 3B								
Material	Area of cross section (mm ²)	Young's Modulus (GPa)	Coefficient of thermal expansion $(\times 10^{-6})^{\circ}$ C)	Body force (N/mm ³)	Traction force (N/mm)	Change in temperature (°C)		
Steel	200	200	12	Nil	5	60		
Brass	400	105	19	0.01	Nil	60		

- 3C. Derive the expression for the thermal force vector for a 2D truss element.
- 4A. Fig. Q 4A shows a Constant Strain Triangular element subjected to point loads (at nodes 2 and 3), traction load (on edge 1-2) and body force (self-weight). The material of the element is steel with Young's Modulus, E = 200 GPa, Poisson's ratio, v = 0.3, density, $\rho = 7850$ kg/m³. The thickness of the element (perpendicular to the plane of paper) is t = 3 mm.
 - (i) Assemble the global force vector.
 - (ii) Determine the strain-displacement matrix.



4B. For the two-bar truss shown in Fig. Q 4B, determine the displacement of node 1. A horizontal force of P = 1000 kN(acting towards left) is applied at node 1. Node 1 settles by an δ = 50 amount mm (downward) in the vertical direction. Take the Young's modulus, E = 210 GPa and Area of cross section, A = 600 mm^2 for each element.



- 4C. Write the Hermite shape functions for a beam element that are used to represent displacement. Also plot their variations over the length of the beam element.
- 5A. discretized beam А structure shown in Fig. Q 5A has a constant 20diameter of mm throughout its length. It is subjected to trapezoidal and triangular distributed loads. Use FEM to model the problem.

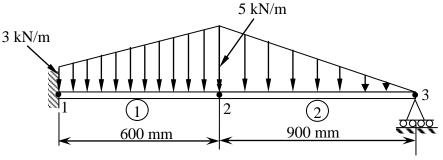
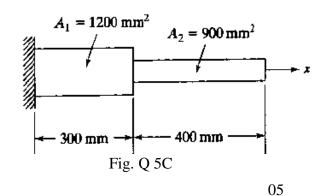


Fig. Q 5A

- Assume Young's modulus, E = 200 GPa
 - (a) Assemble the global stiffness matrix
 - (b) Assemble the global force vector
 - (c) Use Elimination approach to handle the boundary conditions and write the resulting reduced matrix relationship. (**NOTE: DO NOT SOLVE**)
- 5B. Derive the expression for Element body force vector for a 1D bar element using shape functions.
- 5C. Consider the axial vibration (along the direction x) of the stepped steel bar shown in Fig. Q 5C.
 - (a) Assemble the global mass matrix and the global stiffness matrix
 - (b) Determine the natural frequencies of the rod using the characteristic polynomial method.

Consider one element per section of the rod. Assume Young's modulus E = 200 GPa, density, $\rho = 7850$ kg/m³



####

Page 4 of 4

02

02