

SEVENTH SEMESTER B.TECH. (INSTRUMENTATION AND CONTROL ENGG.) **END SEMESTER EXAMINATIONS, NOV - 2017**

SUBJECT: VLSI DESIGN [ICE 4004]

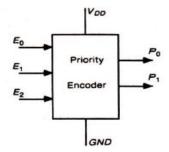
Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Use neat diagrams where ever needed.
- Illustrate the nMOS fabrication process with diagrams. **1A**

- 4
- 1**B** Obtain the expression for drain to source current in non-saturated region of a MOSFET.
- 3
- 1C Determine the pull-up to pull-down ratio for an nMOS inverter driven by another nMOS inverter.
- 3
- An inverter uses FETs with $\beta_n=2.1 \text{ mA/V}^2$ and $\beta_n=1.8 \text{ mA/V}^2$. The threshold voltages **2A** are given as $V_{tn}=0.6 \text{ V}$ and $V_{tp}=-0.7 \text{ V}$ and the power supply has a value of $V_{DD}=5 \text{ V}$. The parasitic FET capacitance at the output node is estimated to be C_{FET}=74 fF.
 - 1. Find the midpoint voltage V_M.
 - 2. Find the values of R_n and R_p .
 - 3. Calculate the rise and fall times at the output when C_L=0.
 - 4. Calculate the rise and fall times when an external load of value C_L=115 fF is connected to the output.
- **2B** Sketch a transistor-level schematic and stick diagram/layout for the following function:

$$Y = \overline{AB + C.(A + B)}$$


- **2C** What is body effect? How does it affect the operation of a MOSFET?
- 2

Draw the equivalent RC circuit of a 2-input XOR gate. **3A**

3

4

3B Construct a color-coded stick diagram to implement a priority encoder as in the following table:

E ₂	E ₁	E ₀	P ₁	P_0
0	0	0	0	0
0	0	1	1	1
0	1	0	1	0
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	0	1

4

ICE 4004 Page 1 of 2 3C Sketch a transistor-level schematic of a JK flip-flop.
4A Illustrate the design flow of a mixed-signal system with a flowchart.
4B Briefly explain the types of basic logic cells employed in a programmable ASIC.
4C Implement the following state table using a ROM and two D flip-flops:

Present	Next State		Output (Z)		
State	X = 0	X = 1	X = 0	X = 1	
So	S ₀	S ₁	0	1	
S,	S ₂	S ₃	1	0	
S ,	S,	S ₃	1	0	
S,	S,	S ₂	0	1	

5A Implement a 4:1 MUX using a 4-input LUT based FPGA configurable logic block.

5B Briefly explain the different fault types and models.

5C What are the essential circuit models required for Built-in-self-test (BIST)? Illustrate them with figures.

ICE 4004 Page 2 of 2