Reg. No.

A Constituent Institute of Manipal University, Manipal

VII SEMESTER B.TECH (MECHANICAL/IP ENGG.) END SEMESTER

MAKE UP EXAMINATIONS, DEC 2017

SUBJECT: DESIGN OF THERMAL POWER PLANT SYSTEMS (P- 6) [MME 4010]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

05

05

05

Instructions to Candidates:

- Answer **ALL the** questions.
- Missing data may be suitably assumed.
- Use of heat exchanger data sheet, thermodynamics and heat transfer data book are permitted
- **1A.** With a neat sketch explain various heat exchangers present in the steam generation process.
- **1B.** Find the overall heat transfer coefficient and hair pin length of the Double pipe heat exchanger with the following specifications:

Tube nominal diameter	:	3" (Schedule 40) ¾" (Schedule 80)
Number of tubes	:	3
Hot fluid/Cold fluid	:	Engine oil / Sea water
Mass flow rate	:	Hot: 8 kg/s and cold: 4.41 kg/s
Entry temperature	:	Hot: 140°C and cold: 40°C
Exit temperature of hot	:	100°C
Tube material	:	Carbon steel, AISI 1010
Neglect fouling resistance	÷	

- **2A.** Explain with neat sketches the different models of film condensation in tube bundles.
- **2B.** Find the length of the Shell and tube heat exchanger with following specifications:

Shell size	:	12″	Hot fluid	:	Treated water (5000 kg/h)
Number of pass	:	1	Cold fluid	:	Sea water (50000 kg/h)
Baffle spacing	:	0.25 m	Entry temperature	:	Hot: 80°C / Cold: 38°C
			Exit temperature	:	Hot: 40°C / Cold: 42°C
Tube material	:	Carbon steel, AISI 1010			

Tube material : Carbon steel, AISI 1010 Tube configuration : ³/₄" OD on 1" square pitch (20 BWG)

Neglect effect of property variation at shell side. Also neglect fouling resistance. 05

3A. Explain different methods used to cool process fluid in industrial applications. **05**

3B. Flue gas at 300°C with a velocity of 20 m/s flow across a compact heat exchanger of type 9.1-0.737-S. Water at 40°C and flow rate of 40 kg/s flows through the conduit. Frontal length and height for gas flow is 0.60 m x 0.50 m. Flow length is 0.40 m. Neglect wall resistance. Find rate of heat transfer.

Water side c/s porosity	:	0.15
Material	:	Al alloy 195
Height of the fin	-	1.5 mm
Water side area of core volume	:	150 m²/m³

- **4A.** How tube or annulus side pressure drop can be reduced in case of double pipe heat exchangers? Explain with neat sketch.
- **4B.** A condenser is to be designed to condense 200 kg/h of steam at atmospheric pressure. A square array of 144, 15 mm outside diameter tubes are available for the design and the wall temperature of the tube is maintained at 96°C.
 - (a) Estimate the length of the tube required (by referring Nusselt relation), if the condenser is to be installed in the horizontal position.
 - (b) If the above condenser is by mistake installed in the vertical position, will there be any change in the condensation rate? If so find the modified value.
- 5A. A furnace heater is designed for heat load of 10 MW. The process fluid has the transfer coefficient of 1000 W/m²K. Tubes are 235 mm in diameter with 350 mm spacing and have the wall heat transfer coefficient of 2500 W/m²K. Vertical cylinder heater have 5 rows of horizontal plain tubes each 2.5 m long in convection section. Overall efficiency of the heater is 85 %. Natural gas fuel (CH₄) is fired with 25 % excess air. Take the average flue gas temperature as 900 K and tube temperature as 280 K. Find the overall heat transfer coefficient of tubes in the convective section.
- **5B.** In a cooling tower performance test, the following readings are noted in case of Forced mode.

Water entry temperature	Ш	45°C
Water exit temperature	=	40°C
WBT at entry	=	25°C
WBT at exit	=	30°C
DBT at entry	=	33°C
DBT at exit	=	37°C
Water flow rate	=	10 lpm
Duration of test	=	300 s

Find:

- (a) Cooling tower duty
- (b) Cooling tower efficiency
- (c) Mass flow rate of air
- (d) Rate of make-up water

05

05

05

05

05