Question Paper

Exam Date & Time: 03-May-2018 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES END-SEMESTER THEORY EXAMINATION- MAY 2018 I SEMESTER B.S.(ENGINEERING) DATE:03.05.2018 TIME:09:30AM TO 12.30PM

Mathematics - I [MA 111]

Marks: 100 Duration: 180 mins.

Answer 5 out of 8 questions.

Find the n^{th} derivatives of i) $e^{ax} \sin(bx + c)$. ii) $x^3 e^{ax}$.

Evaluate i) $\int_0^\pi \frac{\sqrt{1-\cos x}}{1+\cos x} \sin^2 x \, dx \text{ ii) } \int_0^\infty \frac{dx}{(a^2+x^2)^n} . \tag{8}$

Trace the curve $xy^2 = a^2(a-x)$ with explanations. (4)

2) (8)

- If 0 < a < b then, prove that $\frac{b-a}{1+b^2} < \tan^{-1}b \tan^{-1}a < \frac{b-a}{1+a^2}$ and hence deduce that $\frac{\pi}{4} + \frac{3}{25} < \tan^{-1}\frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$. State the result used.
- Trace the curve $r = a(1 + cos\theta)$ with explanations. (8)
- C) If $y = e^{a \sin^{-1} x}$ then prove that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} (n^2 + a^2)y_n = 0$.
- Prove that the radius of curvature at any point P of the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ is (8)
 - A) three times the length of the perpendicular from the origin onto the tangent to the curve at P.
 - Trace the curve $(x^2 + y^2)x a(x^2 y^2) = 0$ with explanations. (8)
 - Find the radius of curvature of the curve $x^2y = a(x^2 + y^2)$ at the point (-2a, 2a).
- Find the area of the portion included between $r = a(1 + cos\theta) \& r = a (1 a) \& r = a (1 a$
 - Show that the curves $r^2=a^2cos2\theta \ \& \ r=a\ (1+cos\theta)$ intersect at an angle of

 $3 \sin^{-1} \left(\frac{3}{4}\right)^{\frac{1}{4}}$

- A variable plane at constant distance 3p from the origin meets the axes in A, (4) B, C. Show that the locus of the centroid of the Δ ABC is $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{1}{y^2}$.
- Show that evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $(ax)^{\frac{2}{3}} + (by)^{\frac{2}{3}} = (a^2 b^2)^{\frac{2}{3}}$.
 - Find the length of the arc of the parabola $y^2 = 4ax$ measured from the vertex to one extremity of the latus rectum. (8)
 - Test the convergence of the series $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} x^{2n}$. (4)
- Find the image of the point (1, -2, 3) in the plane 2x 3y + 2z + 3 = 0.
 - B) State the values of x for which the following series converge (8)

$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \cdots \infty$$
.

- Find the equation of the plane through the origin and containing the line $\frac{x-1}{5} = \frac{y-2}{4} = \frac{z-3}{5}.$
- Expand $\log(1+\sin x)$ in powers of x by Maclaurin's theorem up to terms

 (8)

 A) containing x^4 .
 - Test the convergence of the series $\frac{x}{1+x} + \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} + \cdots \infty$. (8)
 - Find the equation of the sphere having the circle $x^2+y^2+z^2+10y-4z-8=0$, (4) x+y+z=3 as a great circle.
- Find the magnitude and the equation of the line of shortest distance between

 A) the lines

$$\frac{x}{2} = \frac{y}{-3} = \frac{z}{1} & \frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}.$$
B)
Evaluate $\lim_{x \to a} \frac{(1+x)^{\frac{1}{x}} - e}{x}.$

C) (4)

Find the equation of the plane passing through the point (1,1,3) and parallel to the plane

$$3x + 4y - 5z = 0.$$

----End-----