Question Paper

Exam Date & Time: 27-Apr-2018 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES SECOND SEMESTER B.Sc (APPLIED SCIENCES) END-SEMESTER THEORY EXAMINATIONS APRIL - 2018 DATE : 27 APRIL 2018 TIME : 9:30AM TO 12:30PM Logic Design [IEC 121]

Marks: 100

Duration: 180 mins.

Answer 5 out of 8 questions.

Missing data, if any, may be suitably assumed.

- ¹⁾ A circuit has three inputs say, A, B and C. The output Z will ⁽⁶⁾ be at logic '1' only if at least two or more inputs are at logic
 - A) '1'. Simplify the function using K- map and implement using logic gates.
 - ^{B)} Simplify the Switching function using K-Map. ⁽⁸⁾

F(A,B,C,D) = A'B'C'D' + A'B'C'D + A'BCD + AB'C'D + ABCD.

^{C)} Draw the circuit diagram of S-R flip-flop using gates and ⁽⁶⁾ write truth table. Show how JK flip flop can be converted to D flip flops.

²⁾ Simplify the Boolean function $F = \sum m(0,2,4,6) + d(5,7)$ ⁽⁸⁾

- ^{A)} and implement using logic gates.
- ^{B)} Show that AB + AB'C+BC' = AC + BC'.
- Complete the timing diagram for D flip flop i) for negative
 edge triggered ii) for positive edge triggered iii) for level
 triggered.

(4)

		CLK		
		Q		
		<u>Q</u>		
3)		Minimize the following multiple output function using K-MAP	(10)	
	A)	$F1 = \sum m(0,2,6,10,11,12,13) + d(3,4,5,14,15)$		
		$F2 = \sum m(1,2,6,7,8,13,14,15) + d(3,5,12)$		
	B)	Implement a single digit BCD adder using 4bit Binary adder and additional gate	(10)	
4)		Design a circuit for BCD to seven segment decoder	(10)	
	A) B)	Design Half subtractor using only NAND gates	(10)	
5)		Design a BCD to gray code converter using PLA .	(10)	
	A) B)	Design a 2 bit UP-Down Asynchronous counter.	(10)	
6)	A)	Design 32:1 multiplexer using 4:1 mux. Write the truth table	(10)	
	B)	Design 3:8 decoder using basic gates	(10)	
7)		Design Full adder using only NAND Gates only	(10)	
	A) B)	Design a 4bit Ring counter Explain with necessary timing waveform	(10)	
8)		Solve the	(10)	
	A)	a) Subtract 89.75 from 43.25 Using 2's compliment method b) Add (E0.5D) ₁₆ with (49.F7) ₁₆ c) Add (27.5) ₈ and (74.4) ₈		
	B)	Write the dataflow VHDL code for 3 input NAND and 3 input NOR gate	(10)	

-----End-----