

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES END-SEMESTER THEORY EXAMINATION- MAY 2018 I SEMESTER B.Sc.(Applied Sciences) DATE:03.05.2018 TIME:09.30AM TO 12.30PM MATHEMATICS - 1 [IMA 111]

Marks: 100 Duration: 180 mins.

Answer 5 out of 8 questions.

Find the n^{th} derivatives of i) $e^{ax} \sin(bx + c)$. ii) $x^3 e^{ax}$. (8)

A)

B)

Obtain a reduction formula for $\int \cos^m x \sin^n x dx$ when m and n are non-negative integers. Hence evaluate $\int_{a}^{\frac{\pi}{2}} \cos^m x \sin^n x dx$.

C) Trace the curve $x = a \cos^3 \theta$, $y = b \sin^3 \theta$, a > b with explanations. (4)

2) If $y = e^{m \cos^{-1} x}$ then prove that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + m^2)y_n = 0$. (8)

Integrate the following: (i) $\int_{0}^{2a} x^2 \sqrt{2ax-x^2} dx$ (ii) $\int_{0}^{\infty} \frac{1}{(1+x^2)^{\frac{7}{2}}} dx$ (8)

Find the n^{th} derivative of $\frac{x}{(x-1)(2x+3)}$ (4)

Prove that the radius of curvature at any point P of the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ is three times the length of the perpendicular from the origin onto the tangent to the curve at P.

Find the co-ordinates of curvature at any point of the parabola $y^2 = 4ax$ Hence show that its evolute is $27ay^2 = 4(x-2a)^3$

C) Find the angle of intersection of the curves $r = (sin\theta + cos\theta)$ and $r = 2sin\theta$.

Find the volume of the solid generated by the curve $xy^2 = 4a^2(2a-x)$ about yaxis.

- Find the image (reflection) of the line $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{4}$ in the plane 2x + y + z = -2.
- Find the area of the loop of the curve $3ay^2 = x(x-a)^2$. (4)
- Find the surface of the solid generated by the revolution of the leminscate (8) $r^2 = a^2 \cos 2\theta$
 - Test the convergence of the series $\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \cdots \infty$. (8)
 - Obtain the perimeter of the cardiod $r=a(1+cos\theta)$. (4)
- Find the equation of the right circular cylinder having the circle $x^2+y^2+z^2=9$, x-y+z=3 as base circle.
 - (i) Find 'c' such that $f(x) = \sqrt{x}$ and $g(x) = \frac{1}{\sqrt{x}}$ satisfy Cauchy's mean value theorem in $\left[\frac{1}{4},1\right]$
 - (ii) Evaluate $\lim_{x\to 0} \frac{x \sin x}{(e^x 1)^2}$

theorem.

7)

- Find the point where the line $\frac{x-2}{2} = \frac{y-4}{-3} = \frac{z+6}{4}$ meets the plane 2x + 4y z 2 = 0
 - Find the equation of the cone whose vertical angle is $\frac{\pi}{2}$, which has its vertex at the origin and its axis along the line x=-2y=z
 - Evaluate $\lim_{x \to \infty} \left(\frac{ax + 1}{ax 1} \right)^x$ (8)
 - Test the convergence of the series $\sum_{n=1}^{\infty} ne^{-n^2}$ and mention the test used. (4)
- Expand $tan^{-1}x$ in powers of (x-1) up to third degree terms by Taylor's
 - (i) Test for conditional convergence of the series $\sum \frac{(-1)^{n-1}n}{n^2+1}$
 - (ii) Write the Macluarian series expansion of $\sqrt{1-x}$ upto third degree term.
 - Find the tangent planes to the sphere $x^2+y^2+z^2-4x+2y-6z+5=0$ which are parallel to the plane 2x+2y-z=0.

(8)

----End-----