Question Paper

Exam Date & Time: 17-Apr-2018 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES SECOND SEMESTER B.S. (ENGG) END-SEMESTER THEORY EXAMINATIONS APRIL - 2018 DATE: 17 APRIL 2018 TIME: 9:30AM TO 12:30PM Mathematics - II [MA 121]

Marks: 100

Duration: 180 mins.

Answer 5 out of 8 questions. Missing data, if any, may be suitably assumed

1) Find the maximum and minimum values of the function (7) $f(x,y) = x^3 + y^3 + 3xy$ A) Change the order of integration and hence evaluate, B) (7) $\int_{0}^{1}\int_{-\infty}^{2-x} xy \, dy \, dx$ C) (6)Define a basis for E^n . Test whether the set $B = \{(1,1,0),$ (3,0,1), (5,2,2) forms a basis for R³. If so, represent (1, 2, 3) in terms of basis vectors. 2) (7) Define an orthonormal basis of vectors and construct an orthonormal basis from the set of basis vectors $\{(0,1,0),$ A) (2,3,0), (0,2,4)} by using Gram Schmidt process. Evaluate $\int \int_{c}^{\Box} \vec{F} \cdot \vec{n} \, dS$, where $\vec{F} = (x + y^2)\vec{i} - 2x\vec{j} + 2yz\vec{k}$ and S B) (7) is the surface of the plane 2x + y + 2z = 6. Find the area of the region bounded by the curves $y = 2 - x^2$ (6) C) and v = xFind the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and (7) 3) $z = x^2 + y^2 - 3$ at the point (2, -1, 2). A) The temperature T at any point (x,y,z) in space is $400xyz^2$. ⁽⁷⁾ B) Find the highest temperature on the surface of the unit sphere $x^2+y^2+z^2=1$, using Lagrange's method of

4)	C)	Show that the following system of equations are consistent and solve them. $x + y + z = 6$, x + 2y + 3z = 14, $x + 4y + 7z = 30$. Verify Stoke's theorem for $\vec{A} = y^2 \vec{i} + xy \vec{j} - xz \vec{k}$, where S is	(6) (7)
	A)	the upper half of the spher $x^2 + y^2 + z^2 = a^2, z \ge 0$.	
	B)	Find the volume bounded by the cylinder $x^2+y^2=4$ and the planes $y+z=4$ and $z=0$	(7)
	C)	If $u=f(2x-3y, 3y-4z, 4z-2x)$, then prove that $6u_x+4u_y+3u_z=0$	(6)
5)	A)	Prove that $\nabla \vec{r} ^n = n \vec{r} ^{n-2} \vec{r}$. Hence evaluate $div\left(\frac{\vec{r}}{ \vec{r} ^3}\right)$.	(7)
	B)	Verify Green's theorem in the plane for $\phi(y - \sin x)dx + \cos x dy$. The closed curve of the region is the	(7)
		triangle bounded by the vertices (0,0), $(0,\frac{\pi}{2})$ and $(\frac{\pi}{2},1)$	
	C)	Evaluate $\iint_{R}^{\square}(x^{2}+y^{2})dx dy$, where R is the region bounded by y=x and y ² =4x.	(6)
6)		If $r^2 = x^2 + y^2 + z^2$ and $V = r^m$ then, prove that	(7)
	A)	$V_{xx}+V_{yy}+V_{zz}=m(m+1)r^{m-2}$	
	A) B)		(7)
		Find the rank of a matrix $\begin{pmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{pmatrix}$ by reducing	(7)
		$\begin{pmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$	(7)
7)	В)	Find the rank of a matrix into Echelon form. $\begin{pmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{pmatrix}$ by reducing	
7)	В)	Find the rank of a matrix into Echelon form. Prove that $\nabla \times (\emptyset \overrightarrow{A}) = (\nabla \emptyset) \times \overrightarrow{A} + \emptyset (\nabla \times \overrightarrow{A}).$	(6)
7)	B) C)	Find the rank of a matrix $ \begin{pmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{pmatrix} $ by reducing into Echelon form. Prove that $\nabla \times (\emptyset \overrightarrow{A}) = (\nabla \emptyset) \times \overrightarrow{A} + \emptyset (\nabla \times \overrightarrow{A})$. If $u = \log (x^3 + y^3 + z^3 - 3xyz)$, then prove that	(6)
7)	B) C) A)	Find the rank of a matrix into Echelon form. Prove that $\nabla \times (\emptyset \overrightarrow{A}) = (\nabla \emptyset) \times \overrightarrow{A} + \emptyset (\nabla \times \overrightarrow{A})$. If $u = \log (x^3 + y^3 + z^3 - 3xyz)$, then prove that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$ Find the volume of the region enclosed by the cone	(6) (7)
7)	B) C) A) B)	Find the rank of a matrix $\begin{pmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{pmatrix}$ by reducing into Echelon form. Prove that $\nabla \times (\vec{Q}\vec{A}) = (\nabla \vec{Q}) \times \vec{A} + \vec{Q} (\nabla \times \vec{A})$. If $u = \log (x^3 + y^3 + z^3 - 3xyz)$, then prove that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$ Find the volume of the region enclosed by the cone $z = \sqrt{x^2 + y^2}$ and the paraboloid $z = x^2 + y^2$	(6) (7) (7)

Find the inverse of a matrix
elementary transformations.
Is
$$\vec{F} = (y^2 \cos x + z^3)\hat{\imath} + (2y \sin x - 4)\hat{\jmath} + (3xz^2 + 2)\hat{k}$$
 is conservative
? If so find scalar potential.
Prove that $\beta(p,q) = \frac{\Gamma(p) \ \Gamma(q)}{\Gamma(p+q)}$.
(6)

B)

C)

-----End-----