## **Question Paper**

Exam Date & Time: 04-Jun-2018 (09:30 AM - 12:30 PM)



### MANIPAL ACADEMY OF HIGHER EDUCATION

#### INTERNATIONAL CENTRE FOR APPLIED SCIENCES II SEMESTER B.Sc. (Applied Sciences) DEGREE MAKE UP- EXAMINATION -MAY / JUNE 2018 DATE: 4 JUNE 2018 TIME : 9.30 AM TO 12.30 PM Strength Of Materials [IME 123]

Marks: 100

Duration: 180 mins.

(10)

## Answer ANY FIVE full Questions. Missing data, if any, may be suitably assumed

- <sup>1)</sup> Discuss the following:
  - a) Thermal stress
    - b) Modulus of rigidity
    - c) Young's modulus
    - d) Factor of safety
    - e) Hook's Law
  - <sup>B)</sup> A steel rod of length 20 m at a temperature of 20ŰC. Find <sup>(10)</sup> the free expansion of the rod when the temperature is raised to 65ŰC. Also find the temperature stress and strain when the free expansion of the rod is prevented. Take E =  $2x10^5$  N/mm<sup>2</sup> and coefficient of thermal expansion = 0.000012/ ŰC.

# Derive the equation for shear force and bending moment (10) for a cantilever beam subjected to a concentrated load.

- <sup>′</sup> Also draw the shear force and bending moment diagram.
- <sup>B)</sup> Draw the shear force and bending moment diagram for a <sup>(10)</sup> simply supported beam of length 5 m subjected with a load of 20 KN at a distance of 2 m from end A and a load of 10 KN is acting at distance of 2 m from the end B.
- A cantilever beam of 6 m long carries a load of 20 KN at its <sup>(10)</sup>
  A cantilever beam of 6 m long carries a load of 20 KN at its <sup>(10)</sup>
  free end and 20 KN at a distance of 3 m from the fixed
  end. Determine the shear force and bending moment at
  the salient points and also draw the shear force and
  bending moment diagram.

|    | В)       | Derive an expression for shear force and bending moment<br>for simply supported beam subjected to UDL and also draw<br>shear force and bending moment diagram                  | (10) |
|----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4) |          | Discuss how the simple bending theory is derived.                                                                                                                              | (2)  |
|    | A)<br>B) | Derive an equation for moment carrying capacity of a section of a beam.                                                                                                        | (8)  |
|    | C)       | A beam is of T section with flange 100 mm x 12 mm and<br>web is 12 mm x88 mm.Find the shear stress at the neutral<br>axis if the shear force acting on the beam is 20000N.     | (10) |
| 5) |          | Derive the equation for shear stress developed in a beam.                                                                                                                      | (10) |
|    | A)       |                                                                                                                                                                                |      |
|    | B)       | Find the stress at failure for a cantilever beam of length 2 m, fails when a load of 12 KN applied at its free end. The cross- section of the beam is 200 mm x 200 mm.         | (10) |
| 6) | A)       | Determine the equation for slope and deflection for a cantilever beam subjected to UDL.                                                                                        | (10) |
|    | B)       | Prove that <b>EI(d<sup>2</sup>y/dx<sup>2</sup>) = M</b>                                                                                                                        | (10) |
| 7) | A)       | Find the slope and deflection for a cantilever beam of 3 m long subjected to a point load of 10 KN at its free end.Take $EI = 4x10^4$ KN-m <sup>2</sup> .                      | (10) |
|    | B)       | Find the angle of twist for a solid shaft of length 6 m and diameter is 114 mm when subjected to a Torque of 12 $x10^{6}$ N-mm. Take G = $83x10^{3}$ N/mm <sup>2</sup> .       | (10) |
| 8) | A)       | Derive an expression for Rankin's load using Rankin formula.                                                                                                                   | (10) |
|    | B)       | The internal diameter of the pipe is 60 mm and thickness 20 mm, carries a fluid at a pressure of 20 N/mm <sup>2</sup> . Find the maximum hoop stress by using Lame's equation. | (10) |

-----End-----