Question Paper

Exam Date & Time: 25-Apr-2018 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES II SEMESTER B. S (ENGG) END-SEMESTER THEORY EXAMINATION- APRIL 2018 DATE:25.04.2018 TIME:09.30AM TO 12.30PM Strength Of Materials [ME 124]

Marks: 100

Duration: 180 mins.

Answer 5 out of 8 questions.

Missing data, if any, may be suitably assumed

- ¹⁾ Write the difference between the features of stress- strain ⁽¹⁰⁾ _{A)} curves of ductile and brittle materials with graph.
 - ^{B)} Drive an expression for deformation in a simple bar under ⁽¹⁰⁾ axial load
- Obtain the equations for shear force and bending moment (10)
 for a cantilever beam subjected uniformly distributed load.
 - Also draw the shear force and bending moment diagrams
 - B) A simply supported beam of 5 meters long. It carries a load ⁽¹⁰⁾ of 10 KN at a point C which is 2 meters from the right support B and 20 KN at a point D which is 2 meters from the left support A. Determine the shear force and bending moment at the salient points and also draw the shear force and bending moment diagrams.
- ³⁾ Derive the expression for shear force and bending moment ⁽¹⁰⁾ for a simply supported beam subjected to a point load and
 - also draw the shear force and bending moment diagrams.
 - B) A cantilever beam of 5 meters long, carries a load of 10 KN ⁽¹⁰⁾ at its free end and a load of 20 KN at a point C which is 2 meters from the fixed end. Determine the shear force and bending moment at the salient points. Also draw the shear force and bending moment diagrams.
- ⁴⁾ Derive the equation for bending for a beam. ⁽¹⁰⁾
 - A)
 - ^{B)} A cast iron cantilever beam of length 1.5 meters, fails when ⁽¹⁰⁾

a load of 1920 N is applied a its free end. Determine the stress at failure if the cross-section of the beam is 40 mm x 40 mm.

- ⁵⁾ Determine the equation for the slope and deflection for a ⁽¹⁰⁾ cantilever beam subjected to a moment at its free end.
 - ^{B)} Determine the differential equation for deflection in a ⁽¹⁰⁾ beam.
- ⁶⁾ A symmetrical I section with top and bottom flange are 200 $^{(10)}$ ^{A)} mm x 10 mm and web is 380 mm x 8 mm. The shear force acting on the I section is 100 KN. Determine the shea stress at bottom of the top flange.
 - ^{B)} Determine the equation for slope and deflection for a (10) simply supported beam subjected to a point load at its centre.
- Find the slope and deflection for a for a cantilever beam of ⁽¹⁰⁾
 3 meter long subjected to a point load of 10 KN at its free
 - end. Take $E = 2x10^5$ N/ mm² and $I=2x10^8$ mm⁴.
 - ^{B)} State the assumptions of Euler's column theory. ⁽⁶⁾
 - ^{C)} Write the differences between the long column and the ⁽⁴⁾ short column.
- Show that the hallow circular shaft whose inner diameter is ⁽¹⁰⁾
 half the outer diameter has a shear strength equal to16/15
 A)
 - times of that of a solid shaft of the same outer diameter.
 A pipe of 60 mm internal diameter and 100 mm external ⁽¹⁰⁾
 - diameter carries a fluid at a pressure of 20 N/mm². Find the maximum hoop stress in the section of the pipe by using Lame's equation.

-----End-----