Question Paper

Exam Date & Time: 04-May-2018 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES THIRD SEMESTER B.S (ENGG) END-SEMESTER THEORY EXAMINATIONS APRIL - 2018 DATE: 4 MAY 2018

TIME: 9:30AM TO 12:30PM

COMBINATIONAL AND SEQUENTIAL LOGIC [EC 231]

Marks: 100 Duration: 180 mins.

Answer 5 out of 8 questions.

Ar	ıswer	5 out of 8 questions.	
1)	A)	(i) Add 548.6 + 280.37 in BCD number system (ii) Convert the following to the indicated bases (34F.B)16 = (?) $_8$ (84.3)10 = (?) $_2$	(6)
		(iii) In an odd parity scheme which of the following contains an error	
		(a) 10110111 ₂ (b) 11101010 ₂	
	В)	Design a combinational circuit to detect the decimal numbers 0,1,3,5 and 7 in a BCD input.	(4)
	C)	Simplify the following function using karnaugh map and draw the circuit for the simplified expression using NAND gates. Also determine the essential prime implicant $F(A,B,C,D)=\sum m(0,4,5,10,11,13,15)$	(5)
	D)	Write a dataflow VHDL code for 8 to 3 encoder	(5)
2)	A)	Simplify the following Boolean expression (a) AB+(AC)'+AB'C(AB+C) (BC)']'(AB'+ABC)	(5)
	B)	Design a combinational circuit to convert BCD to gray code using basic gates.	(5)
	C)	Using Quine Mccluskey method, Obtain the minimal sum for $F(A,B,C,D) = \sum m(0,1,6,7,8,9,13,14,15)$	(10)
3)	A)	With a neat circuit diagram, explain the working of 4 bit binary adder/subtractor	(5)
	В)		(5)
			Page

Implement the following function $F(A,B,C,D) = \sum_{i=1}^{n} f(A,B,C,D) = \sum_{i=1}^{n} f(A,B,C,D)$ m(0,1,3,4,8.9,15) using (i) 8:1 multiplexer and basic gates (ii) 4:1 multiplexer and basic gates C) (5) Implement the following multiple output combinational circuit using 4 to 16 decoder with active low outputs. $F1 = \sum m(0,1,2,6) F2 = \sum m(2,4,6) F3 = \sum m(0,1,5,6)$ $F4 = \sum m(0,1,4,7,12,14,15)$ D) Write a behavioral VHDL code for 8:1 multiplexer using (5) case statement Implement the function $F = \sum m(0,2,4,6,7,8,10,12,13,15)$ (5) 4) A) using PLA. B) (5) Design a circuit for 4 to 2 priority encoder using basic gates C) Convert (i) JK flip-flop to SR flip-flop, (ii) SR flip-flop to T (5) flip-flop (5) D) Design a Mod 6 ripple up counter using T flip-flop (10)5) Design a synchronous counter that goes through states 0,1,2,4,0,....The unused states must always go to zero A) (000) on the next clock pulse B) Explain the operation of a master slave JK flip-flop with a (5) neat circuit diagram C) (5) Draw the logic diagram of gated SR latch using NAND gates. Derive the truth table for the same and explain its operation With a neat circuit diagram, explain the operation of 4 bit (10)6) Universal Shift register for the following table A)

S ₁	S ₀	Operation
0	0	No change
0	1	Shift right
1	0	Shift left
1	1	Parallel load

Reduce the following state table and draw reduced state (5) diagram

Present State	Next State X=0 X=1		Output X=0 X=1	
A	В	С	1	0
В	F	D	0	0
С	D	E	1	1
D	F	E	0	1
E	A	D	0	0
F	В	C	1	0

- Write the behavioral VHDL code for 4 bit parallel in serial out shift register
- Analyze the following synchronous sequential circuit. Draw (10) the logic circuit, excitation table / state table and state diagram, X is the input, A&B are the outputs.

$$J_A=B$$
 , $J_B=X'$, $K_A=X'B$, $K_B=A$ xor

Χ

- Design a Mealy type Sequence detector to detect an overlapping sequence "1010"
- Write the structural VHDL code for 8:1 multiplexer using
 2:1 multiplexer (Code needs to be written for entire hierarchy).
 - Explain the operation of 4 bit Ring counter with a neat circuit diagram and suitable timing waveforms.
 - Define the following terms with an example
 i) Self complementing code.
 ii) Unit distance code.
 - _

-----End-----