Question Paper

Exam Date & Time: 01-Jun-2018 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES IV SEMESTER B.S. DEGREE EXAMINATION-MAY/JUNE 2018 DATE: 1 JUNE 2018 TIME:9.30 AM TO 12.30 PM

Analysis And Control Of Electromagnetic Devices [EE 242]

Marks: 100

Duration: 180 mins.

Answer ANY FIVE full Questions.
Missing data, if any, may be suitably assumed

1)	A)	Prove that a rotating field is produced when 3 phase windings are supplied with 3 phase currents.	(6)
	В)	A 3 phase, 15 hp, 400 V, 50 Hz, 4 pole induction motor runs at 1440 rpm with a PF of 0.86. The Mechanical losses total 1 h, Calculate a) slip b) rotor copper loss c) Input if the stator losses	(8)
		amount to 50 W d) line current e) efficiency f) rotor frequency g) Torque produced.	
	C)	Draw and explain the phasor diagram of a transformer supplying inductive load.	(6)
2)		Compare squirrel cage rotor and slip ring rotor.	(4)
	A)		
	B)	Mention the properties of an ideal transformer	(4)
	C)	The power input to a 3 phase, star connected 3.3 kV synchronous motor is 200 kW per phase. Find the stator current & power factor if the excitation voltage of 2500 V per phase. Synchronous impedance is $(0.1+j10)\Omega$. Also Find the hp	(12)
		output	
3)	A)	From the equivalent circuit derive the torque equation of a 3 phase induction motor.	(4)
	B)	Explain the characteristics and find the condition for maximum torque and the maximum torque.	(6)
	C)	A 3.3 kV. star connected 3 Phase load takes a current of	(10)

4)	А)	200 A at 0.8 PF lag. A synchronous motor without any load is connected to make the overall PF 0.98 lag. Find the kVA ratings of the motor. What is the necessity of a starter for an induction motor ? With a neat sketch explain the Y/ Δ starter.	(8)
	B)	Find the number of tapping required on the autotransformer to limit the starting current to 2 times the full load current. Short circuit current is 5 times the full load current. Find the ratio of starting torque to full load torque. Slip at full load is 4%.	(6)
	C)	Derive the condition for maximum efficiency of a transformer.	(6)
5)	A)	Derive the expression for the power input and power output of a synchronous motor in terms of E, V, $\delta \& \theta$. Find	(12)
	B)	the condition for maximum input and maximum output. A 3 phase, 4 pole, 50 Hz, star connected 400 V induction motor has rotor resistance of 0.1 Ω and rotor reactance of	(8)
		1 Ω . The ratio of stator to rotor turns is 3. Find the torque	
		developed at 6 % slip, maximum torque and starting torque.	
6)		A 100 kVA, 50 Hz distribution transformer is loaded as	(10)
	A)	follows 12 hours - 75 kW at PF of 0.8 lag 6 hours - 50 kW at unity PF 6 hours - 80 kW at 0.9 PF lag Find all day efficiency Iron loss= full load copper loss = 5 kW.	
	B)	Explain the significance of O.C & S.C tests conducted on a single phase transformer.	(2)
	C)	An 11 kV, 3 Phase, star - connected synchronous motor is taking a current of 200 A at unity power factor. The excitation is increased by 20%. Find the new current and PF. Assume constant load. $Xs = j8 \Omega$.	(8)
7)	A)	$ \begin{array}{ll} \mbox{Find the input current, PF, secondary terminal voltage and efficiency for a 200/400 V, 50 Hz transformer. Following are the approximate equivalent circuit parameters referred to LV side. \\ R_c = 200 \Omega & R_{eq} = 1 \Omega \\ X_m = 400 \Omega & X_{eq} = 2 \Omega \end{array} $	(7)

 $R_{load} = 4\Omega$ $X_{load} = 3\Omega$

8)

- B) (4) Derive the emf equation of a transformer. C) A 6000/250 V, 100 kVA, 50 Hz single phase transformer (5) has a mutual flux of about 0.06 wb. Find the number of turns and cross section of conductors in each winding. Assume current density of 4 A per mm^2 . (4) D) Derive the equation for the excitation voltage of a synchronous motor. Find the iron loss and full load copper loss of a 1KVA, 50 (8) Hz, 200/400 V transformer. A) The efficiency is 0.88 both at 50 % full load and 131 % full load. Also find load kVA at maximum efficiency. (8) B) The rotor resistance and reactance per phase of a 4 pole, 50 Hz, 3 phase induction motor are 0.025 Ω and 0.2 Ω respectively. Find the value of external resistance to get a) 80% of maximum torque at starting b) Maximum torque at starting.
- ^{C)} Explain any two methods of starting synchronous motor. ⁽⁴⁾

-----End-----