Question Paper

Exam Date & Time: 18-Apr-2018 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES **FOURTH SEMESTER B.S (ENGG) END-SEMESTER THEORY EXAMINATIONS APRIL - 2018 DATE: 18 APRIL 2018**

TIME: 9:30AM TO 12:30PM

Analysis And Control Of Electromagnetic Devices [EE 242]

Marks: 100 Duration: 180 mins.

Answer 5 out of 8 questions.							
1)		Mention the properties of an ideal transformer	(4)				
	A)						
	В)	Obtain the condition for zero voltage regulation of a transformer.	(4)				
	C)	An 11 kV, 3 Phase, star - connected synchronous motor is taking a current of 200 A at unity power factor. The excitation is decreased by 20%. Find the new current and PF. Assume constant load and synchronous reactance of 9 Ω .	(12)				
2)	A)	Draw and explain the torque / slip characteristics of a 3 Phase induction motor.	(6)				
	В)	Obtain the condition for maximum torque and the maximum torque.	(6)				
	C)	A 3 phase, 4 pole, 50 Hz, star connected 220 V induction motor has rotor resistance of 0.2 Ω and rotor reactance of	(8)				
		1 Ω . The ratio of stator to rotor turns is 2. Find the torque					
		developed at 4 % slip and 20 % slip.					
3)		Distinguish between squirrel cage rotor and slip ring rotor.	(4)				
	A)						
	В)	What is the necessity if a starter for 3 phase induction motor? With a neat sketch explain the star/delta starter.	(6)				
	C)	A 250 V delta connected synchronous motor has an excitation voltage of 350 V. Find the H _p output, input	(10)				
		current and PF. Assume a load angle of $30^{\hat{A}^{\circ}}$, $Z_s = (0.5 + 1.5)$					

4)		What is the significance of All-day Efficiency?	(4)
	A) B)	With sketches prove that the speed of the rotating field is inversely proportional to number of poles.	(6)
	C)	A 15 kVA transformer is loaded as follows 12 hours - 2 kW at PF of 0.5 6 hours - 12 kW at PF of 0.8 6 hours - 18 kW at PF of 0.9 Find the all-day efficiency Iron loss= full load copper loss = 300 W.	(10)
5)	A)	A 1000 kVA, 3 Phase load works at a power factor of 0.8 lag. Find the kVA rating of the synchronous motor to make the overall PF 0.98 lag. The synchronous motor has a load of 50 kW with an efficiency of 90 %.	(10)
	B)	Determine the iron loss and full load copper loss of a 1 kVA, 50 Hz, 200/400 V transformer. The efficiency is 0.88 both at 50 % of full load and 131 % of full load. Assume UPF load. Also find the load kVA at maximum efficiency.	(10)
6)	A)	Explain the significance of O.C & S.C tests on a transformer.	(3)
	В)	Determine R_c , X_m , R_{eq} , X_{eq} referred to primary of a 4 kVA, 200/400 V, 50 Hz transformer with the following test results. O.C Test 200V, 0.7 A, 70 W (LV Side) S.C Test 15V, 5 A, 20 W (HV Side)	(10)
	C)	Also find the efficiency at full load 0.8 PF lag. Find the line current of a 3 phase, 50 Hz, △ connected 20	(7)
		hp, 400 V induction motor stated using Y/△ starter. Full	
		load efficiency =0.8, Full load PF=0.85. The short circuit line current is 5 times the full load value. Slip at full load is 5%. Also find the ratio of starting torque / full load torque.	
7)	A)	Derive the expression for the power output of a synchronous motor in terms of E, V, δ & θ . Find the condition for maximum output neglecting resistance.	(10)
	B)	The power input to a 500 V, 50 Hz, 6 Pole, 3 phase	(10)

		induction motor running at 975 RPM is 35 kW. The stator losses are 1.5 Kw. Calculate				
		a) Slip	b) Rotor copper loss	c) hp		
		output d) line current frequency	e) Efficiency	f) Rotor		
		•	oower factor = 0.85 lag.			
8)	A)	A 4 kVA, 200/400V, 50 Hz transformer has an impedance of $^{(6)}$ (1+j3) Ω referred to secondary, Find the % regulation at full				
	ŕ		wing power factors. b) 0.8 PF lead c) unity lts.	PF.		
	В)	The rotor resistance and reactance per phase of a 4 pole, $^{(6)}$ 50 Hz, 3 phase induction motor are 0.25 Ω and 1 Ω			(6)	
			external resistance to get at starting b) Maximu	-		
	C)	supplying	the phasor diagram of a	transformer	(8)	
		a) a lagging PF 10a	ad b) Unity PF load			
			End			