### **Question Paper**

Exam Date & Time: 26-Apr-2018 (09:30 AM - 12:30 PM)



#### MANIPAL ACADEMY OF HIGHER EDUCATION

## INTERNATIONAL CENTRE FOR APPLIED SCIENCES END SEMESTER THEORY EXAMINATION - APRIL 2018 IV SEMESTER B. S. (ENGG) Date: 26.04.2018

Time: 9.30 A.M. TO 12.30 P.M. Control Systems [EE 241]

Marks: 100 Duration: 180 mins.

## Answer 5 out of 8 questions.

# Missing data, if any, may be suitably assumed

For the Bode plot shown in Fig 1A find the open loop transfer function and frequencies  $\omega_{g1}$  and  $\omega_{g2}$ .



Fig 1A

For the given electrical circuit shown in Fig 1B find  $\frac{V_o(s)}{V_i(s)}$  using Mason's gain formula.



C) Write a brief note on compensating networks.

(4)

Find the state space representation of Armature controlled DC  $_{\rm A)}$  Motor.

(6)

(10)

(6)

B) (14)

Write the differential equations for the mechanical system shown in Fig 2B. Draw the corresponding electrical circuit based on force current and force voltage analogies.



Fig 2B

- Sketch the root locus for  $G(s)H(s) = \frac{K}{s(s+2)(s^2+2s+5)}$  and find the
  - a) stability.
  - Find the gain margin for a unity feedback system with  $G(s) = \frac{6}{(s^2 + 2s + 2) (s + 2)}$  using Nyquist criterion. (10)
- For a second order system subjected to a step input derive expressions for (12)
- a) peak time t<sub>p</sub> b) peak overshoot
  - A second order unity feedback system is characterised by the following transfer function  $\frac{C(s)}{R(s)} = \frac{361}{(s^2 + 16s + 361)}$  Find,
    - a)  $\zeta$  ~ b)  $\omega_{\text{\tiny n}}$  ~ c)  $t_{\text{\tiny s}}$  settling time
    - d) peak time tp e) peak overshoot
- Derive expressions for resonant peak, resonant frequency and bandwidth.
  - Derive expressions for resonant peak, resonant frequency and bandwidth.
  - A feedback control system is characterised by  $G(s)H(s)=\frac{K}{s(s+\alpha)}$  . (10)

Determine K and  $\alpha$  so that resonant peak  $M_{r}{=}$  1.04 and resonant frequency  $\omega_{r}{=}11.55~\text{rads/sec}.$ 

Obtain the state model for the system described by  $\frac{y(s)}{u(s)} = \frac{1}{(s^3 + 6s^2 + 10s + 5)}$  (5)

B) (10)

(10)

For the system represented by the following equations. Find the transfer function  $\frac{x(s)}{u(s)}$  by signal flow graph technique.

$$x = x_1 + \beta_3 u$$

$$x_1 = -a_1x_1 + x_2 + \beta_2 u$$

$$x_2 = -a_2x_1 + \beta_1 u$$

c) Find the transfer function for the Bode plot shown.



Find the transfer function for the Bode plot shown.



A unity negative feedback system is characterised by  $G(s) = \frac{10}{(s+1)}$ , Find the error

as a function of time t and evaluate the same when r(t)=1+2t.

What is the steady state error?

For the mechanical system write the differential equations. Draw the corresponding electrical network based on torque-current analogy and torque voltage analogy.



8) Given  $G(s)H(s) = \frac{K}{s(1+0.2s)(1+0.05s)}$  Find K such that the phase margin is 40°

Given  $G(s)H(s)=\frac{K}{s(1+0.1s)\;(1+s)}$  , Determine the value of K so that gain margin is 6dB.

-----End-----

(5)

(10)