# **Question Paper**

Exam Date & Time: 18-Apr-2018 (09:30 AM - 12:30 PM)



### MANIPAL ACADEMY OF HIGHER EDUCATION

### INTERNATIONAL CENTRE FOR APPLIED SCIENCES FOURTH SEMESTER B.S (ENGG) **END-SEMESTER THEORY EXAMINATIONS APRIL - 2018 DATE: 18 APRIL 2018** TIME : 9:30AM TO 12:30PM VLSI Design [EC 245A]

Duration: 180 mins.

Marks: 100

## Answer 5 out of 8 questions.

### Layout must be drawn using the graph sheet provided. Missing data, if any, may be suitably assumed.

- 1) Explain the working of an enhancement type NMOS transistor<sup>(10)</sup> in cut- off, linear and saturation region. Plot the current-
  - A) voltage characteristics.
  - B) Find the region of operation for NMOS based circuits given in <sup>(10)</sup> **Figure 1B**. Assume  $V_T = 0.4V$ .









### Figure 1B

- 2) Discuss the second order effects of MOSFET in detail with (10)necessary diagrams and equations. A)
  - B)

The MOSFET in **Figure 2B** has  $V_t = 1V$  and  $\mu_n \text{Cox} = 1 \text{ mA/V}^2$ . Find the drain current and drain voltage for  $V_G = 2V$  and  $R_D = 10 \text{k}\Omega$ .

Figure 2B



- <sup>3)</sup> With precise figures explain the different steps involved in <sup>(10)</sup> the fabrication of CMOS using SOI technique.
  - <sup>B)</sup> Draw the circuit, stick diagram and compact layout for p-well <sup>(10)</sup> CMOS inverter for  $\beta_n = \beta_n$
- <sup>4)</sup> Explain the operation of pseudo NMOS inverter. Derive  $Z_{pu}$ / <sup>(10)</sup> <sub>A)</sub>  $Z_{pd}$  ratio for pseudo NMOS inverter driven from a similar inverter.
  - <sup>B)</sup> Give the circuit implementation of following multiple output <sup>(10)</sup> functions using NMOS based PLA. Give the stick notation.

 $Z_1 = AB + \overline{A}\overline{B}C ; Z_2 = AB ; Z_3 = A + \overline{B}C.$ 

- <sup>5)</sup> State and explain the three different scaling models. Discuss <sup>(10)</sup> (10) the effect of scaling using Combined V and D, Constant E and Constant V models on following parameters: [i] Gate area  $A_g$ [ii] Gate capacitance per unit area  $C_o$  [iii] Carrier density in channel  $Q_{on}$  [iv] Maximum operating frequency  $f_o$ .
  - <sup>B)</sup> Derive the expression for rise time estimation and fall time <sup>(10)</sup> estimation of CMOS inverter. What are the significance of rise time and fall time?
- <sup>6)</sup> Calculate the effective input capacitance for the given multi-layer (10) <sub>A)</sub> structure in **Figure 6A** for  $5\mu$ m process. Relative Capacitance value

for metal1= 0.075, polysilicon=0.1 and Gate to channel = 1.0.



- <sup>B)</sup> Write ten differences between CMOS technology and Bipolar <sup>(10)</sup> Technology.
- <sup>7)</sup> Explain structured implementation of N-bit bus arbitration <sup>(10)</sup>
  <sup>A)</sup> logic. Give the stick notation. Discuss the suitability of implementation using NMOS/ CMOS technology
  - <sup>B)</sup> Implement the following 2 input logic function using (10) Transmission gate approach [i] AND gate [ii] OR gate [iii] NAND gate [iv] NOR gate
- <sup>8)</sup> Calculate I<sub>D</sub> and V<sub>SD</sub>, and indicate the region of operation of <sup>(10)</sup> transister M for the circuit in Figure 84. V = 0.4 V/K =
  - <sub>A)</sub> transistor M<sub>1</sub> for the circuit in Figure 8A. V<sub>tp</sub> = -0.4 V, K<sub>p</sub> =  $120\mu A/V^2$ , and W/L = 2.



<sup>B)</sup> Two CMOS inverters are cascaded to drive a capacitive load <sup>(10)</sup>  $C_L = 40 \square C_g$  as shown in **Figure 8B**. Find the  $Z_{pu}$  and  $Z_{pd}$  of each inverter. Calculate the pair delays in terms of  $\tau$  for the inverter geometry indicated in figure for rising step input and falling step input.



-----End-----