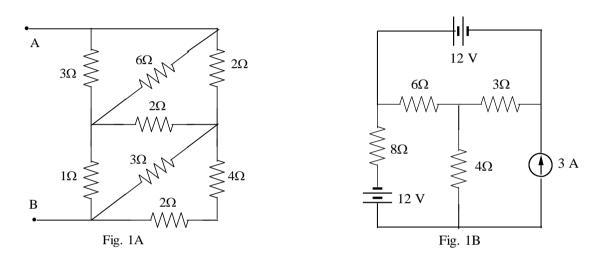
Reg. No.

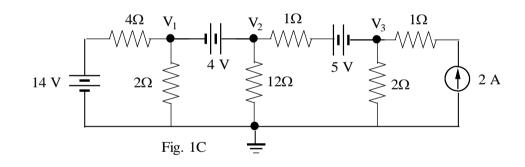
MANIPAL INSTITUTE OF TECHNOLOGY

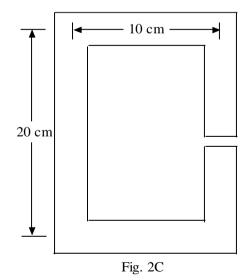
MANIPAL

(A constituent Institution of MAHE, Manipal)

II SEMESTER B.TECH


END SEMESTER EXAMINATIONS, APRIL 2018


SUBJECT: BASIC ELECTRICAL TECHNOLOGY [ELE 1001]


REVISED CREDIT SYSTEM

	REVISED CREDIT SYSTEM		
Time	e: 3 Hours Date: 23 rd April 2018 M	Max. Marks: 50	
Instructions to Candidates:			
	 Answer ALL the questions. 		
	 Missing data may be suitably assumed. 		
1A.	For the circuit shown in Fig. 1A, determine the resistance between A and B.	(03)	
1B.	In the network of Fig. 1B, find the current through 4 Ω resistance using mesh current	t analysis. (03)	
1C.	In the circuit of Fig. 1C, find V_1 and V_2 using node voltage analysis.	(04)	
2A.	A capacitor of 8 μ F is charged to a DC voltage of 60 V. It is then discharged through a r of R Ω . The voltage across the capacitor after 25 m-sec is 30 V. Calculate the (i) v (ii) value of current.		
2B.	Two coupled coils are connected in series. The equivalent inductances are 0.6 H a depending on the relative directions of currents in the two coils. If the self-inductan of the coil is 0.15 H, determine the (i) self-inductance of the other coil (ii) mutual ir (iii) Coefficient of coupling (iv) induced emfs in the two coils when they are con series – aiding if a current of 1.8 A is reversed in 0.01 seconds.	nce of one nductance	
2C.	A magnetic circuit is arranged as shown in Fig. 2C. Length of air gap = 2.3×10^{-3} r cross section = 1.8×10^{-3} m ² , relative permeability of iron = 1100 . A coil of 83 turns of current of 1.5 A is uniformly wound on the circuit. Determine (i) reluctance of iron air gap (ii) flux in the iron path (iii) flux linkage in the coil.	carrying a	
3A. 3B.	Two impedances $Z_1=3/45^{\circ} \Omega$ and $Z_2 = (4 - j2.5) \Omega$ are connected in series across a sin alternating voltage source. The voltage across Z_1 is $27.28/-5.62^{\circ}$ V. Find (i) Voltage second impedance (ii) Applied voltage V (iii) Overall circuit power factor. An impedance of (5 + j10) Ω is connected in parallel with a resistance 25 Ω combination is supplied from 230 V, 50 Hz, single phase AC supply. Calculate (i) O	2 V ₂ across (04) 2 and the	
20	admittance of the circuit (ii) Total active and reactive power (iii) Value of capacita connected in parallel to improve the overall power factor to unity. A circuit having a resistance of 10Ω , inductance of 0.4 H and a variable capacitance	ance to be (04)	
3C.	is connected across an 110 V, 250 Hz supply. Calculate (i) The value of capacitance circuit to be resonant at the supply frequency (ii) Voltage across the inductance		
4A.	Three similar impedances, each of (12 – j8) Ω , are connected in delta across a 400 V phase AC supply. Determine (i) phase current (ii) line current (iii) Active, reactive a apparent powers (iv) readings of the two wattmeters connected to measure the powers	ind (0.4)	

- **4B.** Three impedances, $Z_R = (8 + j6) \Omega$, $Z_Y = 12 / -40^{\circ} \Omega$ and $Z_B = (16 j12) \Omega$ are connected in star across a 200 V, 50 Hz, 3 phase, 3 wire, RYB supply. Determine the line currents.
- 4C. With usual notations, derive the relation between the line and phase voltages in a 3 phase, star connected, balanced load connected to a 3 phase, balanced, 3 phase ac supply. Draw the complete phasor diagram.
- **5A.** Explain the working principle of a 3 phase Induction motor. (03)
- **5B.** With neat sketches, explain the construction of a DC Motor.
- **5C.** With a relevant sketch, explain the operation of an ideal Transformer when the load is connected. **(03)**

ELE 1001

(04)

(04)