Reg.	No.
------	-----

IANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

SECOND SEMESTER B.TECH. (COMMON TO ALL BRANCHES) **END SEMESTER EXAMINATIONS, APRIL 2018**

SUBJECT: ENGINEERING MATHEMATICS-II[MAT 1201]

REVISED CREDIT SYSTEM

16/04/2018

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

1A.	Expand $f(x, y) = sinxy$ in powers of $x - 1$ and $y - \frac{\pi}{2}$ up to third degree terms.	3M
1B.	The period T of a simple pendulum is $T = 2\pi \sqrt{\frac{l}{g}}$. Find the maximum error in T due to possible errors upto 1 % in l and 2 % in g.	3M
1C.	Find the volume of paraboloid of revolution $x^2 + y^2 = 4z$ cut off by the plane $z = 4$.	
2A.	Find the extreme values of the function f(x, y) = xy(a - x - y)	
2B.	Find the area included between the cardioids $r = a(1 + cos\theta)$ and $r = a(1 - cos\theta)$.	
2C.	Solve $y'' + 5y' + 6y = e^{-2t}$ given $y(0) = y'(0) = 1$ by using Laplace transform.	4M
3A.	Evaluate (i) $\lim_{x \to 0} \frac{xe^x - \log(1+x)}{x^2}$ (ii) $\lim_{x \to 0} (1+\sin x)^{\cot x}$.	3M
3B.	Find the nature of the series $\frac{1}{1^2} + \frac{1+2}{1^2+2^2} + \frac{1+2+3}{1^2+2^2+3^2} + \dots$	3M

	Find the Laplace transform of	
3C.	i) $\left\{\frac{1-cost}{t}\right\}$ ii) $\int_0^t t \ e^{-t} \ sin4t \ dt$	4M
4A.	Change the order of integration and evaluate $\int_0^1 \int_{\sqrt{y}}^{2-y} xy dx dy$	3M
4B.	If $u = \log_e \left[\frac{x^4 + y^4}{x + y} \right]$ then find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.	3M
4C.	Find $L^{-1}\left[\frac{3}{s}-4\frac{e^{-s}}{s^2}+4\frac{e^{-3s}}{s^2}\right]$ and sketch the graph of the function of t.	4 M
	Find the equation of a sphere whose great circle is	
5A.	$x^{2} + y^{2} + z^{2} + 10y - 4z = 8, x + y + z = 3.$	3M
5B.	Prove that $\beta(m,n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)}$.	3M
	Test the nature of the series	
5C.	$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \cdots.$	4M
