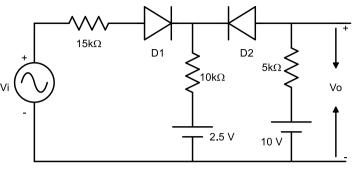
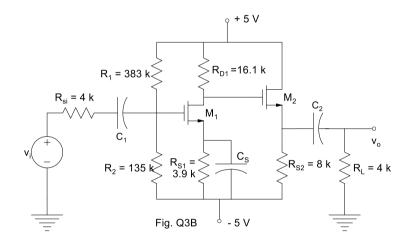
Reg. No.

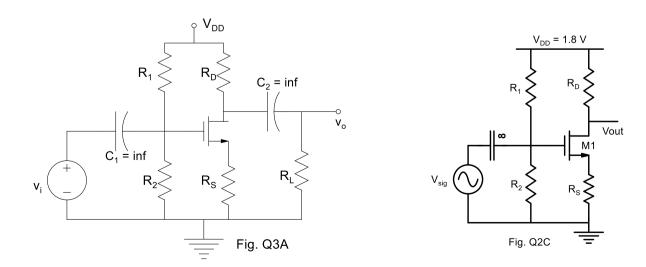
MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent unit of MAHE, Manipal)


III SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

MAKE UP EXAMINATIONS, MAY 2018


SUBJECT: ANALOG ELECTRONIC CIRCUITS [ELE 2105]


REVISED CREDIT SYSTEM

Time:	3 Hours Date: 16 MAY 2018	Max. Marks: 50
Instructions to Candidates:		
	 Answer ALL the questions. 	
	 Missing data may be suitably assumed. 	
1A.	In the figure as shown in fig.Q1A, if Vi has a peak of 20 V, then draw the output and transfer characteristics.	waveform 4
1B.	Discuss the importance of Diode based Clampers with suitable examples.	3
1C.	Write a note on Zener Voltage regulator.	3
2A.	Define transconductance of MOSFET. Hence derive the equations gove relationship between transconductance, current, aspect ratio and gate overdri of the MOSFET.	0
2B.	Discuss the different regions of operation of MOSFET.	3
2C.	Design the circuit shown in Fig. Q2C for a voltage gain of 5V/V and a power budg Assume that the voltage divider branch consumes 5% of total power and vol across Rs is equal to the overdrive voltage of the transistor. Also assume $V_{TH} = 0.4$ V, μ nCox = 200 μ A/V2, λ =0.	ltage drop
3A.	For the NMOS common source amplifier shown in Fig. Q3A, the transistor param $V_{th} = 0.8 \text{ V}$, $\mu_n C_{ox} (W/2L) = 1 \text{ mA}/V^2$, $V_{DD} = 5 \text{ V}$, $R_s = 1 \text{ k}\Omega$, $R_D = 4 \text{ k}\Omega$, $R_1 = 225 \text{ k}\Omega$, Ω_1 calculate the quiescent values I_{DQ} and V_{DSQ} . Draw the small signal model determine the small signal gain for R_L is infinite. Neglect Channel length modula	$P_{1}, R_{2} = 175$ and hence
3B.	Determine the small signal voltage gain of the multistage cascade circuit shown i Draw the small signal model and neglect channel length modulation.	n Fig. Q3B. 5
4A.	Bandwidth of an amplifier lies between 100 Hz and 100 kHz. Find frequency which voltage gain is less than 1 dB from mid-band value.	range over 3
4B.	Design an NMOS current mirror with V_{DD} =5V, V_{SS} =0V, I_{ref} =100µA. For the transistors L=10µm, W=100µm, V_{TH} =1V, $\mu_n C_{ox}$ = 20µA/V ² .	e matched 3
4C.	State and prove Millers theorem.	4
5A.	Classify the power amplifiers based on the operating point.	2
5B.	Derive the expression for conversion efficiency of Class A Power amplifier.	4
5C.	Derive expressions for Differential gain, Common mode gain and CMRR Differential Pair.	of a MOS 4

