

III SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKE-UP EXAMINATIONS, MAY 2018

SUBJECT: ELECTROMAGNETIC THEORY [ELE 2104]

REVISED CREDIT SYSTEM

Time: 3 Hours Date: 14th May 2018 Max. Marks: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Missing data may be suitably assumed.
- **1A.** State Coulomb's law of electrostatic force of attraction/repulsion.

A 5nC point charge is located at A(2,-1,-3) in free space in Cartesian coordinate system.

- a) Determine the electric field intensity at the origin.
- b) Plot |E(x, 0, 0)| versus 'x' for; $-10 \le x \le 10m$
- c) Determine the maximum value of |E(x, 0, 0)|

(04)

- **1B.** Two parallel $10 \ cm \times 10 \ cm$ conducting plates are separated by a distance of $2 \ mm$. The region between the plates is filled with a perfect dielectric where $\varepsilon_R = (1+500x)^2$, where 'x' is the distance from one plate. Assuming a uniform surface charge density of $10nC/m^2$ on the positive plate, determine the following:
 - a) Total charge Q_{total}
 - b) The potential developed between the plates V_0
 - c) The total capacitance

(03)

- **1C.** A thin circular ring of radius 'a' has a total charge '+Q' distributed uniformly over it.
 - a) Derive the expression of the electric field intensity at point P which is 'x' meters from the centre on the axis of the ring
 - b) Determine the force on a charge 'q ' at the point P which is 'x' meters from the centre on the axis of the ring
 - c) Determine the force on the charge 'q' placed at the centre of the ring (03)
- **2A.** Let $D = 6xyz^2a_x + 3x^2z^2a_y + 6x^2yza_z$ C/m^2 . Find the total charge lying within the region bounded by x = 1 and 3; y = 0 and 1; z = -1 and 1 by separately evaluating each side of the divergence theorem. (04)

ELE 2104 Page 1 of 3

2B. With neat diagram and appropriate explanation, prove that, for a uniformly charged disc having radius 'a' meters and charge density ' σ C/m^2 ', the potential at any point situated 'h' meters above its center on its axis is:

$$V = \frac{\sigma}{2\varepsilon_0} \left[\sqrt{(h^2 + a^2)} - h \right]$$
 volts (03)

- **2C.** The plane z=0 separates air $(z \ge 0, \mu=\mu_0)$ from iron $(z \le 0, \mu=200\mu_0)$. Given that: $\overline{\pmb{H}}=10a_x+15a_y-3a_z$ A/m, in air:
 - a) Determine the magnetic flux density in iron.
 - b) Calculate the angle between the field vector and the interface in iron. (03)
- **3A.** Given $\overline{H} = y^2 z a_x + 2(x+1)yz a_y (x+1)z^2 a_z A/m$ in free space:
 - a) Determine $\oint H. dL$ around a square path defined **Fig. Q 3A** and further calculate its value for b=0.1
 - b) Determine the curl of the magnetic field intensity and calculate its x-component value at D(0,2,0)

c) Prove that at point D,
$$(\nabla \times H)_x = \frac{[\oint H. dL]}{\Delta S}$$
 (04)

3B. A solenoid of length 'l' and radius 'a' consists of 'N' turns of wire through which current 'l' flows. With a neat diagram and suitable explanation, prove that at point 'P' along its axis, $H = \frac{[nl(cos\theta_2 - cos\theta_1)]}{2}a_z$

Where: n = N/l, θ_1 and θ_2 are the angles subtended at P by the end turns. (03)

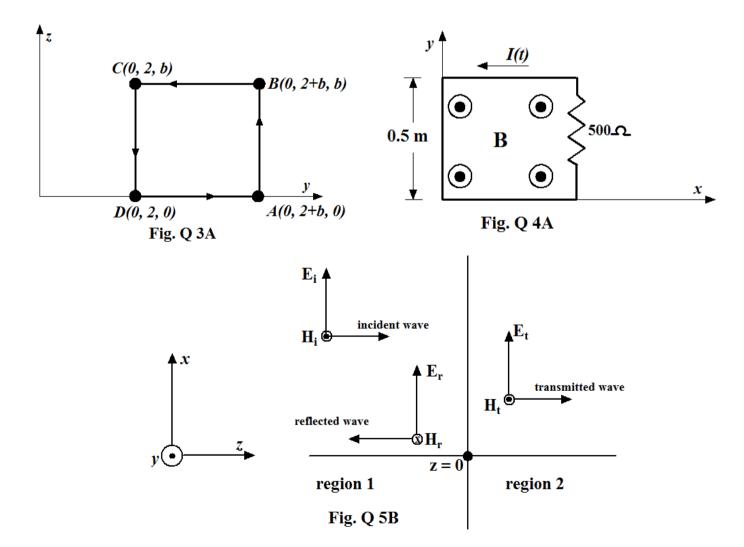
- 3C. The core of a toroid has a cross sectional area of $12 cm^2$ and is made of a material having relative permeability of 200. If the mean radius of the toroid is 50 cm, calculate the number of turns needed to obtain an inductance of 2.5 H. (03)
- **4A.** A perfectly conducting filament containing a 500 Ω resistor is formed into a square as shown in **Fig. Q 4A**. determine the flowing current I(t) in the loop if:

a)
$$\bar{B} = 0.2 \cos 120\pi t \ a_z T$$

b) $\bar{B} = 2 \cos[3\pi \times 10^8 (t - {^x/_c})] a_z \ \mu T$ where $c = 3 \times 10^8 m/s$

(04)

- **4B.** With appropriate explanations, derive Poynting theorem and show that total power leaving a volume is equal to rate of decrease in energy stored in electric and magnetic fields minus the ohmic power dissipated (03)
- **4C.** Let $\bar{E} = (1000a_x + 400a_z)e^{-j10y} V/m$ for a 250 MHz uniform plane wave propagating in a perfect dielectric. If the maximum amplitude of the magnetic field intensity is 3 A/m, determine the following:
 - a) Relative permittivity of the dielectric
 - b) Relative permeability of the dielectric


c)
$$\bar{E}(x, y, z, t)$$
 (03)

ELE 2104 Page 2 of 3

- 5A. A lossy dielectric is characterized by $\varepsilon_R=2.5, \mu_R=4$ and $\sigma=10^{-3}S/m$ at 10~MHz. For a uniform plane wave propagating along the positive z-axis in the dielectric (having propagation constant = γ) at the said frequency, let $\bar{E}=20e^{-\gamma z}a_x\,V/m$ at z=0. Determine:
 - a) Attenuation constant b) Phase constant c) Wave velocity
 - d) wavelength e) Intrinsic impedance f) $\bar{E}(2,3,4,t=10ns)$ (04)
- **5B.** For a uniform plane wave propagating along the positive z-axis as shown in **Fig. Q 5B**, assuming both the mediums to be perfect dielectrics, for a normal incidence, prove with appropriate explanations that:

a)
$$E_{ro}/E_{io} = \Gamma = \frac{\left[\sqrt{\varepsilon_1} - \sqrt{\varepsilon_2}\right]}{\left[\sqrt{\varepsilon_1} + \sqrt{\varepsilon_2}\right]}$$

b) $H_{to}/H_{io} = \tau = \frac{\left[2\sqrt{\varepsilon_2}\right]}{\left[\sqrt{\varepsilon_1} + \sqrt{\varepsilon_2}\right]}$ (03)

- **5C.** A uniform plane wave $\bar{E}=50\sin(\omega t-5x)a_yV/m$ in a lossless medium $(\mu=4\mu_0,\ \varepsilon=\varepsilon_0)$ encounters a lossy medium $(\mu=\mu_0,\ \varepsilon=4\varepsilon_0,\sigma=0.1S/m)$ normal to the x-axis. Determine:
 - a) The reflection and transmission coefficients
 - b) The reflected wave $(E_r \text{ and } H_r)$ (03)

ELE 2104