

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipel University

IV SEMESTER B.TECH. (AERONAUTICAL ENGINEERING) END SEMESTER REGULAR EXAMINATIONS, APRIL 2018

SUBJECT: ENGINEERING MATHEMATICS-IV [MAT 2201]

REVISED CREDIT SYSTEM

(19-04-18)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitably assumed.

1A.	A fair coin is tossed 3 times. Let $X : 0$ or 1 according as head or tail occurs on the first toss. Let Y be the number of heads. Find the joint distribution for the above distribution. Also find correlation coefficient between X and Y .						
1B.	State Bayes theorem. In an exam each candidate is admitted or rejected according whether he has passed or failed the test. Of the students who are really capable, 80% pass the test and of the incapable students, 25% pass the test. Given that 40% of the candidates are really capable. Find the proportion of capable college students.						
1C.	Find constant k so that $f(x)$ is a valid pdf. Hence obtain the expression for cumulative distribution function for the random variable with pdf $f(x) = \begin{cases} Kx(1-x) & 0 < x < 1 \\ 0 & \text{Elsewhere} \end{cases}$						
2A.	If A and B are independent then show thati)A and \overline{B} are independentii) \overline{A} and \overline{B} are independent.	4					
2B.	If X, Y, Z are uncorrelated random variables with standard deviation 5, 12 and 19 respectively and if $U = X + Y$ and $V = Y + Z$, Evaluate the correlation coefficient between U and V.						
2C.	 A life insurance salesman sells on the average 3 life insurance policies per week. Use Poisson's law to calculate the probability that in a given week he will sell i) Some policies ii) 2 or more policies but less than 5 policies. iii) Assuming that there are 5 working days per week, what is the probability that in a given day he will sell one policy? 	3					

		Reg	. No.							
1	MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL									
3A.	The time <i>X</i> minutes, taken by a person to install a satellite dish may be assumed to be a normal random variable with $P(X < 170) = 0.14$ and $P(X > 200) = 0.03$. Find the mean and standard deviation of <i>X</i> .									
3B.	Find the variance of Gamma distribution								3	
3C.	If $M_X(t)$ is the mgf of a random variable X. Then show that mgf of $Y = aX + b$ where and b are constants is $M_y(t) = e^{bt}M_X(at)$. If $M_X(t) = (0.3e^t + 0.7)^8$, find the mgf of $Y = 5X + 3$. Hence find $E(Y)$.									
4A.	Let X be a Continuous random variable with pdf $f(x) = \begin{cases} 1; & 0 < x < 1 \\ 0; elsewhere \end{cases}$. Let X_1 and X_2 be a random sample from X. Let $Y_1 = X_1 + X_2$, $Y_2 = X_1 - X_2$. Find the pdf of Y_2 .									
4B.	Express $J_5(x)$ in terms of $J_0(x)$ and $J_1(x)$									
4C.	Compute an approximate probability that mean of a random sample of size 15 from a distribution having pdf $f(x) = \begin{cases} 2x \ ; \ 0 < x < 1 \\ 0 \ ; elsewhere \end{cases}$ is between $\frac{3}{5} \& \frac{4}{5}$.									
5A.	Find the missing values in the following distribution, given that the mean and the median are 62.7 and 66 respectively.Class10-2020-3030-4040-5050-6060-7070-80								4	
••••	interval Frequency 1	3	-	8	-	30	38			
5B.	For the following data given below, find the equation to the best fitting curve of the form									
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								3	
	x 2 y 144	172.8	207	.4	5 248.8	6	98.5			
5C.								: 5.	3	
	Solve the following equation in series $(1 - x^2)y'' + 2y = 0$, Given $y(0) = 4$, $y'(0) = 5$.									
