		Reg. No.										
MANIPAL INSTITUTE OF TECHNO									LC)G	Y	
NSPIRED BY LIFE	(A constituent institution of MAHE, Manipal)											

IV SEMESTER B.TECH. (BME) DEGREE MAKEUP EXAMINATIONS JUNE 2018

SUBJECT: DIGITAL SYSTEM DESIGN (BME 2203) (REVISED CREDIT SYSTEM) Thursday, 21st June 2018: 2 to 5 PM

TIME: 3 HOURS

MAX. MARKS: 100

1 110	TIME. 5 HOURS WAA. WAARS. 100				
Instructions to Candidates:					
1. 2.		er ALL the questions. labeled diagram wherever necessary			
1.	(a)	What is a "Semicustom IC" and explain. Give an example.	05		
	(b)	What is <i>top down</i> design approach? Explain.	07		
	(c)	Design a CMOS inverter gate. Explain the circuit operation. Compare it with a simple nMOS inverter circuit.	08		
2.	(a)	Draw the neat diagram of SRAM cell and explain.	06		
	(b)	What are Programmable Logic devices? Draw the architecture of a simple PLD and explain.	06		
	(c)	Draw the programmed state of an AND-OR plane of a Programmable Logic Array			
		(PLA) for the following: $f = x_1 x_2 + x_1 x_2$.	08		
3.	(a)	What is transmission gate (TG)? Design a noninverting buffered 2:1 multiplexer using TG and inverters. Explain its operation.	10		
	(b)	 Use Shannon's expansion theorem in the following cases to implement the function: f = w₁ w₃ + w₁w₂ + w₁w₃ : Design the circuit using 2 to 1 MUX and any other necessary gates, using w₁ Design the 4 to 1 MUX and any other necessary gates, using w₁ and w₂ 	10		

4.	(a)	What is FPGA? Draw the diagram of a CLB (Configurable Logic block) of a FPGA and explain.	10
	(b)	Write a Verilog module for design a 2 to 1 MUX.	05
	(c)	What are non-blocking statements? Explain its significance in the design of a sequential circuit	05
5.	(a)	What are benefits of Programmable Array Logic (PAL) over Programmable Logic Array(PLA). With a neat diagram explain the elements of a PAL.	10
	(b)	Write a Verilog HDL module for realizing a Full adder.	05
	(c)	Describe "behavioral style" of designing a digital system design using Verilog HDL module.	05