Reg. No.					
8					

IV SEM B.TECH. (BME) DEGREE END SEMESTER EXAMINATIONS APRIL 2018

SUBJECT: DIGITAL SYSTEM DESIGN (BME 2203) (REVISED CREDIT SYSTEM) Wednesday, 25th April 2018, 2 to 5 PM

TIME: 3 HOURS MAX. MARKS: 100

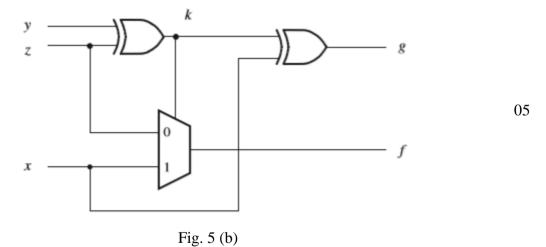
Instructions to Candidates:

1. 2.		r ALL the questions. abeled diagram wherever necessary	
1.	(a)	How is an Application Specific Integrated Circuit (ASIC) different from a standard	06
		IC?. Explain the Semi-customized Application Specific Integrated Circuit.	00
	(b)	Explain the design flow of an ASIC.	06
	(c)	Design a two input CMOS NOR gate. Verify the truth table associated with the circuit, considering ON/OFF state of the transistor.	08
2.	(a)	Draw the architecture of a typical Complex Programmable Logic Device (CPLD),	
		and explain its functioning.	06
	(b)	Draw the diagram of transmission gate based latch and explain its operation.	06
	(c)	Realise the given function: $f(w1, w2, w3) = \sum m(2,3,6)$ using nMOS based PLA.	
		Draw the programmed state of the AND-OR plane with all the details labelled.	08
3.	(a)	State Shannon's expansion theorem that helps in the realization of a logic function	0.4
		using a 4 to 1 multiplexer.	04
	(b)	Expand the logic function "f" given in Q 2 (c) using Shannon's expansion theorem,	
		and realize the function in terms of a 4 to 1 multiplexer. Draw a labelled diagram with	

BME 2203 Page 1 of 2

all variables.

06


(c) Design a two input LUT for implementing the following function:

$$f = x_1 \overline{x_2} + x_1 x_2$$

04

06

- (d) Design a *4-bit array multiplier* using the following logic blocks: full adder/Half 06 adder and basic gates.
- 4. (a) Describe the significant difference between the architecture of channeled and channel-less Gate-Array-based ASICs.
 - (b) Draw the generalized architecture of PAL, along with its extended logic cell. Explain the major elements of the *macrocell and* its significance.
 - (c) Design a Verilog module of a decoder with the following specifications:
 - Output put: Active low vectored notation
 - Design style: dataflow type 06
 - Time unit: 1ns/100ps.
- 5. (a) Draw the architecture of a FPGA. Explain the details of CLB (Configurable Logic block) and the switching technology used in the switch matrix of FPGA.
 - (b) Write a Verilog HDL module for the digital circuit given in figure 5(b).

(c) Design a Verilog HDL module of the 4-bit shift Register using the concept of module instantiation. Use connection by name syntax for creating instance. Draw the associated hardware details.

BME 2203 Page 2 of 2