

FOURTH SEMESTER B.TECH. (BIOMEDICAL ENGINEERING) END SEMESTER EXAMINATIONS, APRIL 2018 SUBJECT: ENGINEERING MATHEMATICS IV [MAT 2203] REVISED CREDIT SYSTEM

(23-04-2018)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

1A.	If the letters of the word REGULATIONS are arranged at random, What is the probability that there will be exactly 4 letters in between R and E?	3M					
1B.	The chance that a doctor A will diagnose a disease correctly is 60%. The chance that a patient will die after correct diagnosis is 40% and the chance of death by wrong diagnosis is 70%. If a patient of A dies what is the chance that his disease was correctly diagnosed?						
1C.	Three balls are randomly selected from an urn containing 3 white, 3red and 5 black balls. The person who selects the ball wins \$ 1.00 for each white ball selected and loses \$ 1.00 for each red ball selected. Let X is the total winnings from the experiment. Find the probability distribution						
2A.	A pair of fair dice are rolled. What is the probability that sum 6 appear before sum 7?						
2B.	A student takes a multiple choice test consisting of 2 problems. The first one has 3 possible answers and the second one has 5. The student choses at random, one answer as the right answer for each of the two problems. Let X denote the number of right answers of the student. Find variance.	3M					
2C.	If X and Y are independent random variables and marginal pdf of X is $g(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & elsewhere \end{cases}$ The marginal pdf of Y is $h(y) = \begin{cases} 1, & 0 < y < 1 \\ 0, & elsewhere \end{cases}$ Compute $P\{ X - Y \le \frac{1}{4}\}$ and $P\{Y \ge X^2\}$	4M					
3A.	Two independent random variables X and Y have mean 5, 10 and variance 4, 9 respectively. Find the correlation coefficient between $U = 3X + 4Y$ and $W = 3X - Y$	3M					

Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

3B.	Fit a parabolic curve $y = ax^2 + bx + c$ to the following data										
	X	0	1	2	3	4	5	6]	3M	
	у	14	18	23	29	30	40	46			
3C.	Show that $P_n(x) = \sum_{r=0}^{N} \frac{(-1)^r (2n-2r)!}{2^n r! (n-r)! (n-2r)!} x^{n-2r}$. Hence deduce that $P_n(-x) = (-1)^n P_n(x)$										
4 A.	Prove that $\int_{0}^{1} x J_n(\alpha x) J_n(\beta x) dx = 0$, when $\alpha \neq \beta$. Where α and β are roots of $J_n(x) = 0$.										
4B.	Prove that $J_n(x) = \frac{x}{2n} [J_{n-1}(x) + J_{n+1}(x)].$										
4C.	Use Big M method to solve $ \begin{array}{l} Minimize \ z = 2x + y \\ Subject \ to 3x + y = 3 \\ 4x + 3y \ge 6 \\ x + 2y \le 3 \\ x, \ y \ge 0 \end{array} $										
5A.	Use simplex method to solve Maximize $Z = 10x + y$ Subject to $x + y \le 10$ $4x + y \le 20$ $x + 2y \le 30$ $x, y \ge 0$										
5B.	In a normal distribution 31% of the items are under 45 and 8% are over 64. Find the mean and variance.										
5C.	Suppose that suicide rates in a certain state is 4 suicides for 1 million inhabitants per month. Find the probability that in a certain town with population 5 lakh there would be atmost 4 suicides per month. What is the probability that during a year there are atleast 2 months in which more than 4 suicides occur?										