Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

IV SEMESTER B.TECH. (CHEMICAL/BIOTECH ENGG.)

END SEMESTER EXAMINATIONS, APRIL-2018

SUBJECT: ENGINEERING MATHEMATICS-IV [MAT 2204]

REVISED CREDIT SYSTEM

Time: 3 Hours

(23/04/2018)

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

Suppose that the joint pdf of the two dimensional random variable (X, Y) is given by $f(x, y) = \frac{2x + y}{210}$, $2 < x < 6$, $0 < y < 5$. Find $E(X)$ and $P[(X + Y) \le 4]$.	4 Marla				
210	Marks				
Solve $y''+xy=1$, $y(0)=0$, $y'(1)=1$, $h=0.5$ by finite difference scheme.	3 Marks				
Only 1 in 1000 adults is afflicted with a rare disease for which a diagnostic test has been developed. The test is such that when an individual actually has the disease, a positive result will occur 99% of the time, whereas an individual without the disease will show a positive test result only 2% of the time. If a randomly selected individual is tested and the result is positive, what is the probability that the individual has the disease?	3 Marks				
Solve $u_{xx} + u_{yy} = 0$, $0 < x, y < 1$ with $h = \frac{1}{3}$. Given $u(0, y) = u(x, 0) = 0$ and $u(1, y) = u(x, 1) = 100$.					
The marks obtained by students in the mathematics test is normally distributed with mean 10 and variance 4. In a section having 70 students, find the approximate number of students who obtained (i) above 13 marks, (ii) not more than 5 marks.	3 Marks				
A box contains 12 items of which four are defective. A sample of 3 items is selected from the box. Let X denote the number of defective items in the sample. Find the probability distribution of X . Determine the mean and standard deviation of the distribution.	3 Marks				
Solve the following LPP using simplex method: Minimize $z = x_1 - 3x_2 + 3x_3$; subject to $3x_1 - x_2 + 2x_3 \le 7$, $2x_1 + 4x_2 \ge -12$, $-4x_1 + 3x_2 + 8x_3 \le 10$, $x_1, x_2, x_3 \ge 0$.	4 Marks				
	Only 1 in 1000 adults is afflicted with a rare disease for which a diagnostic test has been developed. The test is such that when an individual actually has the disease, a positive result will occur 99% of the time, whereas an individual without the disease will show a positive test result only 2% of the time. If a randomly selected individual is tested and the result is positive, what is the probability that the individual has the disease? Solve $u_{xx} + u_{yy} = 0$, $0 < x$, $y < 1$ with $h = \frac{1}{3}$. Given $u(0, y) = u(x, 0) = 0$ and u(1, y) = u(x, 1) = 100. The marks obtained by students in the mathematics test is normally distributed with mean 10 and variance 4. In a section having 70 students, find the approximate number of students who obtained (i) above 13 marks, (ii) not more than 5 marks. A box contains 12 items of which four are defective. A sample of 3 items is selected from the box. Let X denote the number of defective items in the sample. Find the probability distribution of X . Determine the mean and standard deviation of the distribution. Solve the following LPP using simplex method: Minimize $z = x_1 - 3x_2 + 3x_3$;				

3B.	Find the Z-transform of $f_n = \frac{1}{n+1}$, $n \ge 0$.							3 Marks
3C.	With $h = 0.25$, solve $u_t = u_{xx}$, $0 \le x \le 1$, $t > 0$. Given that $u(x, 0) = 100(x - x^2)$, $u(0, t) = u(1, t) = 0$. Compute u for 4 time steps. Assume $\lambda = \frac{1}{2}$ and use Schmidt explicit finite difference scheme.							3 Marks
4A.	$ \begin{array}{c c} data. \\ \hline $	0 2.1	1 7.7	2 13.6	3 27.2	440.9	5 61.1	4 Marks
4B.	A and B throw alternatively a pair of dice. A wins if he throws 6 before B throws 7 and B wins if he throws 7 before A throws 6. If A begins, find his chances of winning the game.							
4C.	produces 3 c Cold	drinks A, B, drinks A B C ng departme ottles of B	C and their	production Pl T_1 $\overline{0000}$ $\overline{0000}$ $\overline{0000}$ $\overline{0000}$ $\overline{0000}$ $\overline{0000}$ $\overline{0000}$ $\overline{0000}$	capacity/day ants at casts a dem c during th	y is shown b T_2 2000 2500 3000 and of 8000 he month o	00 bottles of f May. The	3
	operating cost/day of plants at T_1 and T_2 are Rs.6000 and Rs.4000 respectively. Formulate the LPP. Two independent random variables X_1 and X_2 have means 5 and 10, and variances						Marks	
5A.	4 and 9. Find the covariance between $U = 3X_1 + 4X_2$, $V = 3X_1 - X_2$.							Marks
5B.	Using graphical method, solve the following LPP. Maximize $z = 3x_1 + 2x_2$ subject to $-2x_1 + x_2 \le 1$, $x_1 \le 2$, $x_1 + x_2 \le 3$, $x_1, x_2 \ge 0$.							3 Marks
5C.	Derive the expression for mean and variance of Gamma distribution.							