Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

IV SEMESTER B.TECH. (BIOTECHNOLOGY)

MAKE-UP EXAMINATIONS, JUNE 2018

SUBJECT: GENETIC ENGINEERING [BIO 2203]

REVISED CREDIT SYSTEM

(xx/06/2018)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- **❖** Answer **ALL** the questions.
- Missing data may be suitable assumed.

		I
1A.	Show how the Exchange Reaction can be performed using the enzyme, polynucleotide nuclease.	2
1B.	Which of the two is preferred for including a gene of interest into a cloning vector – a linker or an adapter? Justify.	3
1C.	What are the differences between the <i>ori</i> sequences present in prokaryotes and eukaryotes? Explain with a schematic.	5
2A.	What are the molecules separated by Northern and Western hybridization? What are the probes used for these techniques?	2
2B.	Of the different restriction endonuclease systems available for genetic engineering applications, which is the most useful system? Why is it so?	3
2C.	Consider a plasmid that contains a 3000-bp unknown insert DNA fragment. Recognition sites for the enzymes <i>Kpn</i> I and <i>Bam</i> H I are present within the vector as shown. On digestion with <i>Kpn</i> I, we get a 1000 bp and a big fragment. On digestion with <i>Bam</i> H I, we get a 600 bp, a 220 bp and a big fragment. On subjecting to a double digest, we get 4 fragments of 600, 1000, 1200 bp size & a big fragment. With this data, determine the locations of <i>Kpn</i> I and <i>Bam</i> H I in the insert DNA fragment.	5

BIO 2103 Page 1 of 2

	DNA fragment to be mapped		
3A.	Describe a method, each, for the preparation of single-stranded and double-stranded DNA probes.	3	
3B.	With a simple schematic, explain how RFLPs are generated by loss of cleavage site(s).		
3C.	Discuss any two chemical-mediated methods for transfection of plant cells.	4	
4A.	Outline a program for carrying out 30 cycles of PCR in a thermocycler. Indicate the duration and temperature involved.	4	
4B.	Enlist all the steps followed to create a cDNA library.		
5A.	How can gene therapy be classified? Give a one-line description on each type.		
5B.	What are the different types of plasmids? Write a brief note on each of their applications.	6	