Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

IV SEMESTER B.TECH. (CHEMICAL ENGINEERING) MAKEUP EXAMINATIONS, JUN 2018

SUBJECT: CHEMICAL ENGINEERING THERMODYNAMICS-II [CHE 2201]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitable assumed.

	Calculate the fugacity of nitrogen at 800 bar from the following data at 273 K.									
1A.	P, bar	50	100	200	400	800	1000		04	
	Ζ	0.9846	0.9846	1.0365	1.2557	1.7959	2.0641			
10	The molar x	volume of	a hinary lio	uid mixtu	re is giv	en hv				
ID.	The motal volume of a binary inquid mixture is given by 0.0×10^{-3} $+ 5.0 \times 10^{-3}$ $+ 9.0 \times (0.0 \times 10^{-3})$									
	$90 \times 10^{-3} x_1 + 50 \times 10^{-3} x_2 + x_1 x_2 (6 \times 10^{-3} x_1 + 9 \times 10^{-3} x_2)$									
	Obtain the expressions for V_1 in terms of x_2 .									
	Derive the expression for showing the effect of temperature on fugacity									
1 C .	Derive the expression for showing the effect of temperature on fugacity.									
	Derive an expression for fugacity of a gas following RK equation of state given by									
									04	
2A.	A. $P = \frac{1}{V-b} - \frac{1}{(V+b)V}$									
	where a and	l b are em	pirical cons	tants.		- / -				
	Check whet	ther the gi	ven equatio	ne catiefy	Gibbs D	uhem equati	ion			
20		.nei tile gi	ven equatio	lis satisfy	01003 D	unem equati				
	$ln\gamma_1 = 500$	$) + 140x_1$	$-60x_1x_2$	$-20x_{2}^{2}+$	$20x_1x_2^2$				04	
20.	$lnv_2 = -120x_2 + 90x_2 - 90x_1x_2 - 20x_2^2 + 20x_1x_2^2$ (Note: The final answer on								04	
	both sides of the Gibbs Duhem equation should be in terms of $x_{1,1}$									
	Define Raoult's law Lewis-Randal rule and Henry's law									
20.									02	
3A.	Discuss the effect of temperature on the P-x-y diagram.								02	
3B.	2-propanoi and 1-propanoi forms an ideal solution. Calculate the 1-x-y data (3 sets of									
	data) at 760 Torr. The Antoine equation is given as								OF	
	$\log_{10} P = A - \frac{B}{T+C}$									
	A B C								05	
	2-propan	ol (1)	8.87829	2010.33	$\frac{1}{2}$	52.636	-			
	1-propan	rat(2)	8.37895	1788.02	$\frac{1}{2}$ 0 2	27.438	-			
	Discuss positive and positive deviation from the liter with the hole of all									
3C.	Discuss positive and negative deviation from ideality with the help of phase								03	
	diagrams.									

4A.	The activity coefficient and mole fraction data for the system acetone (1)- dichloroethylene (2) given below. Check their thermodynamic consistency by midpoint method.								
	<i>x</i> ₁	0.023	0.053	0.357	0.516	0.883	0.979	-	
	γ_1	0.608	0.711	0.854	0.917	0.987	1.0	-	
	γ_2	0.993	0.974	0.934	0.891	0.781	0.694		
4B.	Construct the P-x-y diagram for cyclohexane(1)- benzene(2) system at 313 K given that at 313 K the vapour pressures are $P_s^S = 24.62$ kPa and $P_s^S = 24.41$ kPa. The liquid								
	phase activity coefficients are given by $\ln \gamma_1 = 0.458x_2^2$, $\ln \gamma_2 = 0.458x_1^2$.								
5A.	A gas mixture containing 25% CO, 55% H ₂ , and 20% inert gas is to be used for methanol synthesis. The gases enters the reactor as per the following reaction $CO(g) + 2H_2(g) \rightarrow CH_3OH(g)$ at a pressure of 300 bar and temperature of 625 K. Assume that the equilibrium mixture forms an ideal solution and k and k_{ϕ} are 4.9×10^{-5} and 0.35 respectively. What is the conversion of CO and equilibrium composition of all the components?								05
5B.	Starting with Lechatelier's principle, derive van't Hoff equation for showing the effect of temperature on equilibrium constant.								05