Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

IV SEMESTER B.TECH. (CHEMICAL/BIOTECH)

END SEMESTER MAKEUP EXAMINATIONS, JUNE-2018

SUBJECT: ENGINEERING MATHEMATICS-IV [MAT 2204]

REVISED CREDIT SYSTEM (/06/2018)

Time: 3 Hours

MAX MARKS: 50

4

3

3

4

3

3

4

3

Instructions to Candidates: ✤ Answer ALL the questions. ✤ Missing data may be suitable assumed. Suppose that the continuous two random variable (X, Y) is uniformly distributed over 1A. the region whose vertices (1, 0), (0, 1), (-1, 0) and (0, -1). Find the marginal pdf's of X and Y. Solve $(x^3 + 1)y'' + x^2y' - 4xy = 2$, y(0) = 0, y(2) = 4, h = 0.5 by finite **1B.** difference method. Companies A, B, C produces 30%, 45%, 25% of cars respectively. It is known that **1C** 2%, 5%, 2% of the cars produced by A, B, C are defective. If a car is purchased and found to be defective. What is the probability that this car is produced by company A? Solve $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$, 0 < x < 1, t > 0, subjected to $u(x, 0) = 100(x - x^2)$, u(1,t) = 0 = u(0,t), $\frac{\partial u}{\partial t}(x, 0) = 0$ with h = 0.25 for 4 time steps. 2A. For a normally distributed population 31% of the items have their values less than 45 **2B**. and 8% have their values greater than 64. Find the mean and standard deviation of the distribution. Given $f(x) = \begin{cases} 4x^3; 0 < x < 1\\ 0; elsewhere \end{cases}$ (a) Find P(X > 0.8) 2C. (b) Find P($X < \frac{1}{2}$) (c) Find cdf. Solve the following L.P.P. using simplex method:

3A. Maximize $Z = 5x_1 + 3x_2$;

subject to $x_1 + x_2 \le 2$; $5x_1 + 2x_2 \le 10$; $3x_1 + 8x_2 \le 12$, $x_1, x_2 \ge 0$.

3B. Find (i) $Z(coshn\theta)$ (ii) $Z(nsinn\theta)$

Reg. No.

	MANIPAL INSTITUTE OF TECHNOLOG MANIPAL (A constituent unit of MAHE, Manipal)	Y
3C.	Using Crank-Nicolson's method, solve $\frac{\partial u}{\partial t} = 16 \frac{\partial^2 u}{\partial x^2}$, $0 < x < 1$, subjected to $u(x,0) = 100 \sin \pi x$, $u(1,t) = 0 = u(0,t)$ with $h = 0.25$ for 2 time steps.	3
4A.	Fit a parabola to the following data:X:123468Y:2.433.6456	4
4B.	If A and B are two independent events of S, such that $P(\overline{A} \cap B) = \frac{2}{15}$, $P(A \cap \overline{B}) = \frac{1}{6}$, then find $P(B)$.	3
4C.	The Handy-Dandy company wishes to schedule the production of a kitchen appliance that requires two resources – labour and material. The company is considering three different models and its production engineering department has furnished the following data: Model: A B C Max. time available(hrs) Labour (hours per unit): 7 3 6 10 Material (pounds per unit): 4 4 5 15 Profit (\$ per unit): 4 2 3 The problem is to determine the optimum daily production for three models that maximize the profit. Formulate a L.P.P.	3
5A.	 (i) If X, Y and Z are uncorrelated random variables with standard deviation 5, 12 and 9 respectively. If U = X + Y and V = Y + Z, evaluate the correlation coefficient between U and V. 	
5B.	Using graphical method, solve the following L.P.P.: Maximize $Z = 2x_1 + 3x_2$; subject to $x_1 - x_2 \le 2$; $x_1 + x_2 \ge 4$; $x_1, x_2 \ge 0$.	3
5C.	Find the mean and variance of Poisson distribution.	3