Reg. No.

AANIPAL INSTITUTE OF TECHNOLOGY

IV SEMESTER B.TECH. (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, APRIL 2018

SUBJECT: HEAT TRANSFER OPERATION [CHE 2202]

REVISED CREDIT SYSTEM (25/04/18)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

1A.	Derive an expression for the rate of heat flow through a composite cylindrical wall made of several resistances in series by stating the necessary assumptions.	5
1B.	An ice-ball of initial diameter 0.06m is suspended in a room at 30°C. The ice melts by absorbing heat from the ambient, the surface heat transfer coefficient being 11.4 W/m ² °C. The air in the room is essentially dry. If the shape of the ball remains unchanged, calculate the time required for reduction in its volume by 40%. The density of ice is 929 kg/m ³ and its latent heat of fusion is 3.35×10^5 J/kg.	5
2A.	A 1 kW electric room heater has a coil of nichrom wire of diameter 0.574 mm and electrical resistance 4.167 ohm/m. if the temperature of the room remains constant at 21° C and the average heat transfer coefficient at the surface of the wire is $100 \text{ W/m}^2 ^\circ\text{C}$, calculate the time required for the heating coil, after it is switched on, to reach 63% of its steady state temperature rise. Assume that the wire itself offers negligible heat transfer resistance. The density of the material of the wire is 8920 kg/m ³ , and its specific heat is 384 J /kg °C.	4
2B.	Derive the expression for temperature profile in the rectangular fin with its ends insulated. State all the assumptions made.	6
3.	Benzene from the condenser at the top of a distillation column is cooled at a rate of 1000 kg/h from 75°C to 50°C in a counter current double pipe heat exchanger, the construction of heat exchanger is a hairpin type with an effective length of 15 m, the inner tube of carbon steel 25 mm outer diameter 14 BWG, the outer pipe is schedule 40, 1-1/2 inch nb (nominal bore). Benzene flows through the annulus, water which flows through the inner tube, entering at 30°C and leaving at 40°C is the coolant. a) Calculate the heat duty of the exchanger and the water flow rate b) Calculate the individual film co-efficient and the overall co-efficient based on both inside and outside areas.	10

	c) do you think that the tube wall has gathered scale and have been fouled? if so estimate the fouling factor	
	estimate the fouring factor.	
	The following data are available Inner tube: I.D -21mm, O.D – 25.4mm, wall thickness-2.2mm, thermal conductivity of the tube wall – 74.5 w/m.k Outer pipe: I.D – 41mm. O.D – 48mm. Thermo physical properties.	
	 i) Benzene at the average temperature (62.5°C) Specific heat - 1.88 KJ/kg °C, Viscosity - 0.37CP, Density - 860 kg/m³, Thermal conductivity - 0.154 W/m.k ii) Water at average temperature (35°C) 	
	Viscosity $-$ 0.8CP, Thermal conductivity $-$ 0.623 W/m.k, Specific heat $-$ 4.183 KJ/kg.°C Density $-$ 1000 kg/m ³ .	
4A.	Explain the importance of super-saturation in crystallization process and explain working principle of vacuum crystallizer with neat sketch.	5
4B.	A single effect evaporator is to be designed to concentrate 8000 kg/hr of a chemical solution from 10% to 20% by weight, feed enters at 25oC, saturated steam at 110°C (latent heat 532 Kcal /kg) is available, condensate leaves at saturation temperature, the solution boils at 45°C (latent heat is 570 Kcal/kg), specific heat of all the solution may be taken as 1 Kcal/kg and overall heat transfer co-efficient is 1800 Kcal/hr.m ² .°C . Find (a) Steam economy (b) Heat transfer area.	5
5A.	A Swenson-walker crystallizer is used to produce 1000 kg/hr of copperas (FeSO4.7H ₂ O) crystals by the cooling of a saturated solution which enters the crystallizer at 50°C and slurry is leaving at 26.6°C, cooling water enters the crystallizer jacket at 15°C and leaves at 25°C. a) Estimate heat removed b) cooling water and total heat transfer area required. Assume: U for crystallizer = 6.61 w/m ² .k X _L ' at 50°C= 140 kg of copperas / 100kg of excess water X _L ' at 26.6°C = 74 kg of copperas / 100kg of excess water. Average specific heat of solution and water is 2.93 and 4.187 KJ/kg.K respectively. Latent heat of crystallization is (26.5°C) is 66.291 KJ/kg.	6
5B.	Explain in detail the effect of liquid head and boiling point elevation in multiple effect evaporators.	4