

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

IV SEMESTER B.TECH. (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, April 2018

SUBJECT: INTRODUCTION to CHEMICAL ENGINEERING [CHE3281]

REVISED CREDIT SYSTEM (30.04.2018)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

1A.	An aqueous solution of NaCl is created by using 133 g of NaCl diluted to a total solution volume of 1.00 L. Calculate the molarity, molality, and mass percent of the solution, given a density of 1.08 g/mL and MW of NaCl = 58.442 g/mol.	3
1B.	What are various modes of heat transfer? Write about Fourier's law of heat conduction.	3 (1+2)
1C.	A gas consists of 70% propane (C ₃ H ₈) and 30% butane (C ₄ H ₁₀) by volume. Find: I. The stoichiometric air-to-fuel ratio II. The percentage excess air present if a dry analysis of the combustion products shows 9% CO ₂ (assume complete combustion). $C_3H_8 + 5 O_2 + 18.8 N_2 \rightarrow 3 CO_2 + 4 H_2O + 18.8 N_2$ $C_4H_{10} + 6.5 O_2 + 24.5 N_2 \rightarrow 4 CO_2 + 5 H_2O + 24.5 N_2$	4 (2+2)
2A.	With the help of a neat flow diagrams explain how a chemical engineer helps in designing, developing and commercializing a product.	3
2B.	At 29.6 °C, pure water has a vapor pressure of 31.1 torr. A solution is prepared by adding 86.8 g of "Y", a nonvolatile non-electrolyte to 350 g of water. The vapor pressure of the resulting solution is 28.6 torr. Calculate the molar mass of Y.	4
2C.	What mass of carbon dioxide is produced when 96.1 g of propane react with sufficient oxygen? $C_3H_8+O_2 \rightarrow CO_2+H_2O$	3
3A.	Define mass transfer and explain about Fick's law of diffusion.	3

3B.	A textile dryer is found to consume 4 m ³ /hr of natural gas with a calorific value of 800 kJ/mole. If the throughput of the dryer is 60 kg of wet cloth per hour, drying it from 55% moisture to 9% moisture, estimate the overall thermal efficiency of the dryer taking into account the latent heat of evaporation only. Latent heat of evaporation = 2257 kJ/K	4
3C.	 According to the U. S. Department of Energy, the 2003 model of the Chevrolet Malibu has a highway fuel economy rating of 29 mi/gal. Compute the equivalent value of this fuel consumption rate in units of km/L. Highway regulations in a certain jurisdiction state that a truck with two axles may have a maximum weight of 16000 pounds on the front axle and 20000 pounds on the rear axle. Convert these weights to their equivalents in kilograms 	3 1+2)
4A.	In a commercial process, nitric oxide (NO) is produced: $NH_3 + O_2 \rightarrow NO + H_2O$ What mass (in grams) of NO can be made from the reaction of 30.00 g NH ₃ and 40.00 g O ₂ ? Calculate the yield depending on the limiting reactant. Also, the chemist obtained 25.50 g NO. What is the percentage yield of this reaction?	4
4B.	 I. Calculate the mole fraction of ethanol and water in a sample of rectified spirit which contains 95% of ethanol by mass. II. What volume (L) of O₂ gas is needed to completely react with 15.0 g of aluminum at STP? Al(s) + O₂ (g) → Al₂O₃(s) 	3 (1+2)
4C.	What is laminar flow and turbulent flow? Write the formula for Reynold's number.	3
5A.	Calculate the equivalent weights of HCI (MW = 36.5) and Sr(OH) ₂ (MW = 122), of H ₂ SO ₃ (MW=82) and LiOH (MW=24) and HNO ₃ (MW = 63) and Ga(OH) ₃ (MW = 121) in the following reactions: I. HCI + Sr(OH) ₂ \rightarrow H ₂ O + Sr(OH)CI II. HNO ₃ + Ga(OH) ₃ \rightarrow H ₂ O + Ga(OH) ₂ (NO ₃) III. H ₂ SO ₃ + LiOH \rightarrow H ₂ O + LiHSO ₃	3
5B.	Clearly explain about any top eight achievements of a chemical engineer in developing the society.	4
5C.	Define Newtonian and non-Newtonian fluids. A reservoir of oil has a mass of 825 kg. The reservoir has a volume of 0.917 m ³ . Compute the density, specific weight, and specific gravity of the oil.	3 (1+2)