D N				
Reg. No.				

IV SEMESTER B.TECH. MAKEUP EXAMINATIONS-JUNE 2018

SUBJECT: Mass Transfer -1 [CHE 2203]

REVISED CREDIT SYSTEM, (14/06/2018)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates: Answer ALL the questions. Missing data may be suitable assumed.

1.	Ammonia is diffusing through nitrogen. The total pressure is 206.8 KN/m ² and the temperature is 60 °C. Calculate the rate of diffusion of the ammonia through a film of gas 0.5 mm thick when the concentration change across the film is 10 to 5 % Ammonia by weight. Consider both extreme cases which can be solved. Data: Ammonia: ε/k=558.3; r=0.29 nm, Nitrogen: ε/k=71.4; r=0.3798 nm	10
2	Estimate the mass transfer coefficient and mass transfer flux when pure CO_2 at 1 atm and 25 0 C into water flowing as film down a vertical wall of 1.5 m long at the rate of 0.08 Kg/s per meter of width. The gas is pure CO_2 and water is essentially CO_2 free initially. Assume the diffusivity of CO_2 in water is 2×10^{-9} m ² /s and concentration of CO_2 in water at that temp and pressure can reach to 0.0336 kmol/m ³ . The density and viscosity of solution is 1000 kg/m^3 and 1×10^{-3} Pa/s.	10
3A.	It is desired to dry 10 kg of soap from 20% moisture (wt.) by contact with hot air. The wet soap is placed in a vessel containing 8.06 m^3 of air at $45 ^{0}\text{C}$ & 1 atm with water vapour partial pressure of 1.6 Kpa. The system is not allowed to reach equilibrium and stopped when the moisture in air reaches to 13%. Find the absorption factor at this condition. The equilibrium data was represented as $Y = -0.7135 X^2 + 0.4636X + 0.0039$	5
3B.	Explain the 10 points to select/choose the tray or packed tower for a given system	5
4	A coal gas is to be freed of its light oil by scrubbing with wash oil as an absorbent. Gas in $0.3~\text{m}^3/\text{s}$ at $26~^{0}\text{C}$ and p_t = $1.07\text{x}10^5~\text{N/m}^2$ containing 3% by volume of light oil vapors. The light oil will be assumed to be entirely benzene and a 90% removal is required. Wash Oil and Benzene solutions are ideal solution and temperature is constant (vapour pressure of benzene at $26~^{0}\text{C}$ is $13330~\text{N/m}^2$) wash oil is to enter at $26~^{0}\text{C}$, containing $0.005~\text{mole}$ fraction benzene. Find the number of theoretical stages required for an oil circulation rate of 2 times of minimum oil rate is to be used.	10
5A	Explain the following adsorbents preparation method and end uses: a) Fullers earths b) Activated clays c) Bauxite d) Alumina and 4) Bone char	2
5B	Define humid heat and humid volume	6
5C	Briefly explain the adsorption hysteresis phenomena with the help of graph	2