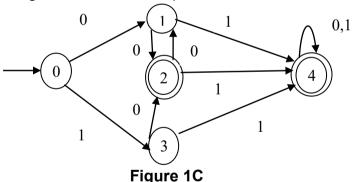
Reg. No.

IV SEMESTER B.TECH. (COMPUTER SCIENCE AND ENGINEERING) **END SEMESTER EXAMINATIONS, APRIL 2018**

SUBJECT: FORMAL LANGUAGES AND AUTOMATA THEORY [CSE 2201] **REVISED CREDIT SYSTEM** (17/04/2018)

Time: 3 Hours MAX. MARKS: 50


Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Missing data may be suitably assumed.

1A. Give a grammar that generates all real constants in **C++**. **3M**

1B. Let $\Sigma = \{a, b\}$, find a DFA with **3** states for accepting the language **3M** $L = \{ w : (n_a(w) + 2n_b(w)) \mod 3 < 2 \}$

1C. Using mark and reduce procedure, minimize the DFA in Figure 1C.

4M

2A. Find a regular expression for the language **5M** L = {w ε {a, b}*: $n_a(w)$ and $n_b(w)$ are both even} using **nfa-to-rex** procedure.

2B. **2M** Let $L_1 = L(0*10*)$ and $L_2 = (10*1)$. Design a DFA for L_1/L_2 and then find L_1/L_2 .

2C. Prove that $L = \{w: w = w^R, w \in \{0, 1\}^*\}$ is not regular using Pumping lemma. **3M**

3A. Define ambiguity in context free grammar. Show that the grammar with the following productions: $E \rightarrow E - E$, $E \rightarrow 0 \mid 1$ is ambiguous. **4M** Construct an equivalent unambiguous grammar.

3B. Remove all unit-productions, all useless productions and all λ -productions from the grammar:

S →aCbb

 $B \rightarrow CD$

 $C \rightarrow D | a | \lambda$

4M $D \rightarrow B | b | \lambda$

CSE 2201 Page 1 of 2

3C.	Define Chomsky normal form and Greibach normal form with an example for each.	
	eacii.	2N
4A.	Construct an NPDA with 3 states for L = {w ϵ {a, b}*: $n_a(w) = n_b(w) + 1$ }. Give instantaneous description (ID) for the string baaba .	4N
4B.	Let $L_1 = \{a^nb^n : n \ge 0\}$ and $L_2 = \{a^nb^{2n} : n \ge 0\}$ are deterministic context free	
	languages. Design PDA for L = L_1 U L_2 Is L deterministic? Justify your answer.	3N
4C.	Show that the following language is context-free.	
	L = { w ε {a, b}* : n _a (w) = n _b (w), w does not contain the substring aab }	3N
5A.	For $\Sigma = \{(,)\}$, design a Turing machine with 4 states for the language	
	L = {w: w contains balanced parenthesis}. For example (())() and (()) are balanced parentheses, but (())(and (() are not. Give ID for the string (())().	4N
5B.	V /	3N
	$L = \{a^n b^n c^n : n \ge 1\}$	0.11
5C.	(a) Define decidable and undecidable problems. Give an example for each.(b) Define recursive language. Give an example.	3N

CSE 2201 Page 2 of 2