Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent Institution of MAHE, Manipal)

IV SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

END SEMESTER EXAMINATIONS, APRIL 2018

SUBJECT: SIGNALS AND SYSTEMS [ELE 2201]

REVISED CREDIT SYSTEM

Date: 19 A	oril 2018	Max.	Marks: 5
		war.	warks. J

Time: 3 Hours **Instructions to Candidates:**

50

- Answer ALL the questions.
 - Missing data may be suitably assumed.
 - Transform Table may be supplied.

1A. If discrete time signal
$$h[n] = \begin{cases} \frac{n}{2}; & -4 \le n \le 4\\ 0; & otherwise \end{cases}$$
, sketch and label the following signals
(i) $y[n] = h[n+2] + h[-1-n];$ (ii) $y[n] = 2h[n] \times h[2n];$ (03)

Determine whether the following signals are energy signals or power signals, also find the 1B. energy and power of signals.

(i)
$$x(t) = e^{-at} u(t)$$
; where $a > 0$ (ii) $x[n] = 2e^{j3n}$; (03)

- **1C.** Find the response y(t) = x(t) * h(t) where $x(t) = \begin{cases} 1; & 0 \le t \le 2\\ 0; & otherwise \end{cases}$ and $h(t) = x\left(\frac{1}{2}t\right)$ (04)
- Following are the impulse response of LTI systems. Check whether each system is 2A. memoryless, causal and/or stable (i) $h[n] = \left(\frac{4}{5}\right)^n u[n+4]$ and (ii) $h(t) = e^{-3t+1}u(t-2)$ (02)

2B. Compute
$$y[n] = x[n] * h[n]$$
; where $x[n] = \left(\frac{1}{2}\right)^n u[n-4]$ and $h[n] = \left(4^n\right) u[2-n]$ (04)

2C. Obtain the complete response of an LTI system described by the difference equation:

$$y[n] - \frac{7}{6}y[n-1] + \frac{1}{3}y[n-2] = x[n]$$
. Given: $x[n] = \left(\frac{1}{2}\right)^n u[n]$; $y[-1] = 2$, $y[-2] = -1$. Use time-domain method. (04)

Determine the time domain signal corresponding to the DTFT representation. 3A

Given:
$$\left| X\left(e^{j\Omega}\right) \right| = \begin{cases} 1; & \frac{\pi}{3} \le \Omega \le \frac{2\pi}{3} \\ 0; & otherwise \end{cases}$$
 and $\angle \{X\left(e^{j\Omega}\right)\} = -3\Omega$ (04)

- **3B.** Find the Exponential Fourier series coefficient of a periodic continuous time signal x(t) shown in Fig. Q. 3B. Also plot the magnitude spectrum. (04)
- **3C.** For continuous-time signal x(t) shown in Fig.Q.3C, evaluate the following without computing $X(j\omega)$.

(i)
$$\int_{-\infty}^{\infty} X(j\omega) e^{j\omega} d\omega$$
 (ii) $\int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega$ (02)

4A. Use the properties of Fourier transform to find the time-domain signal x(t) for the signal

$$X(j\omega) = j\frac{d}{d\omega} 4 \left[\cos(3\omega) \frac{\sin(\omega)}{\omega} \right]$$
(04)

- **4B.** For the system shown in Fig.Q4B find the Fourier transform of g(t). Given: $x(t) = \frac{\sin 3\pi t}{\pi t}$ and $p(t) = \cos \pi t$ (03)
- **4C.** A discrete time periodic signal x[n] is real valued and has a fundamental period $N_0 = 5$ The nonzero Fourier series coefficients for x[n] are;

X(0) = 2; X(2) = X(-2)^{*} =
$$e^{j\frac{\pi}{4}}$$
; X4 = X(-4)^{*} = 2 $e^{j\frac{\pi}{3}}$;

Hence find discrete time signal x[n].

5A. Given that
$$x[n] = \left(\frac{1}{3}\right)^n u[n] \leftrightarrow X\left(e^{j\Omega}\right)$$
 Without evaluating $X\left(e^{j\Omega}\right)$, find $y[n]$ if
 $y\left(e^{j\Omega}\right) = \frac{d}{d\Omega} \left\{ e^{-j\Omega} \left[X\left(e^{j\left(\Omega + \frac{\pi}{3}\right)}\right) - X\left(e^{j\left(\Omega - \frac{\pi}{3}\right)}\right) \right] \right\}$
(04)

5B. Find the inverse z-transform of

$$X[z] = \frac{z}{\left(z - \frac{1}{2}\right)\left(z - 2\right)^2} |z| > 2$$
(03)

5C. Use properties to find the Z-transform of signal $x[n] = n \left(\frac{1}{3}\right)^{n-1} u[n-2]$ (03)

(03)